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The neuroscience of perception has recently been revolutionized
with an integrative modeling approach in which computation,
brain function, and behavior are linked across many datasets and
many computational models. By revealing trends across models,
this approach yields novel insights into cognitive and neural mech-
anisms in the target domain. We here present a systematic study
taking this approach to higher-level cognition: human language
processing, our species’ signature cognitive skill. We find that the
most powerful “transformer” models predict nearly 100% of
explainable variance in neural responses to sentences and general-
ize across different datasets and imaging modalities (functional
MRI and electrocorticography). Models’ neural fits (“brain score”)
and fits to behavioral responses are both strongly correlated with
model accuracy on the next-word prediction task (but not other
language tasks). Model architecture appears to substantially con-
tribute to neural fit. These results provide computationally explicit
evidence that predictive processing fundamentally shapes the lan-
guage comprehension mechanisms in the human brain.

computational neuroscience j language comprehension j neural recordings
(fMRI and ECoG) j artificial neural networks j deep learning

A core goal of neuroscience is to decipher from patterns of
neural activity the algorithms underlying our abilities to

perceive, think, and act. Recently, a new “reverse engineering”
approach to computational modeling in systems neuroscience
has transformed our algorithmic understanding of the primate
ventral visual stream (1–8) and holds great promise for other
aspects of brain function. This approach has been enabled by a
breakthrough in artificial intelligence (AI): the engineering of
artificial neural network (ANN) systems that perform core per-
ceptual tasks with unprecedented accuracy, approaching human
levels, and that do so using computational machinery that is
abstractly similar to biological neurons. In the ventral visual
stream, the key AI developments come from deep convolu-
tional neural networks (DCNNs) that perform visual object rec-
ognition from natural images (1, 2, 4, 9, 10), widely thought to
be the primary function of this pathway. Leading DCNNs for
object recognition have now been shown to predict the
responses of neural populations in multiple stages of the ven-
tral stream (V1, V2, V4, and inferior temporal [IT] cortex), in
both macaque and human brains, approaching the noise ceiling
of the data. Thus, despite abstracting away aspects of biology,
DCNNs provide the basis for a first complete hypothesis of
how the brain extracts object percepts from visual input.

Inspired by this success story, analogous ANN models have
now been applied to other domains of perception (11, 12).
Could these models also let us reverse-engineer the brain
mechanisms of higher-level human cognition? Here we show
how the modeling approach pioneered in the ventral stream
can be applied to a higher-level cognitive domain that plays an
essential role in human life: language comprehension, or the
extraction of meaning from spoken, written, or signed words
and sentences. Cognitive scientists have long treated neural

network models of language processing with skepticism (13,
14), given that these systems lack (and often deliberately
attempt to do without) explicit symbolic representation—tradi-
tionally seen as a core feature of linguistic meaning. Recent
ANN models of language, however, have proven capable of at
least approximating some aspects of symbolic computation and
have achieved remarkable success on a wide range of applied
natural language processing (NLP) tasks. The results presented
here, based on this new generation of ANNs, suggest that a
computationally adequate model of language processing in the
brain may be closer than previously thought.

Because we build on the same logic in our analysis of lan-
guage in the brain, it is helpful to review why the neural
network-based integrative modeling approach has proven so
powerful in the study of object recognition in the ventral
stream. Crucially, our ability to robustly link computation, brain
function, and behavior is supported not by testing a single
model on a single dataset or a single kind of data, but by large-
scale integrative benchmarking (4) that establishes consistent
patterns of performance across many different ANNs applied
to multiple neural and behavioral datasets, together with their
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performance on the proposed core computational function of
the brain system under study. Given the complexities of the
brain’s structure and the functions it performs, any one of these
models is surely oversimplified and ultimately wrong—at best,
an approximation of some aspects of what the brain does. How-
ever, some models are less wrong than others, and consistent
trends in performance across models can reveal not just which
model best fits the brain but also which properties of a model
underlie its fit to the brain, thus yielding critical insights that
transcend what any single model can tell us.

In the ventral stream specifically, our understanding that
computations underlying object recognition are analogous to
the structure and function of DCNNs is supported by findings
that across hundreds of model variants, DCNNs that perform
better on object recognition tasks also better capture human
recognition behavior and neural responses in IT cortex of both
human and nonhuman primates (1, 2, 4, 15). This integrative
benchmarking reveals a rich pattern of correlations among
three classes of performance measures—1) neural variance
explained in IT neurophysiology or functional MRI (fMRI)
responses (brain scores), 2) accuracy in predicting hits and
misses in human object recognition behavior or human object
similarity judgments (behavioral scores), and 3) accuracy on
the core object recognition task (computational task score)—
such that for any individual DCNN model we can predict how
well it would score on each of these measures from the other
measures. This pattern of results was not assembled in a single
paper but in multiple papers across several laboratories and
several years. Taken together, they provide strong evidence that
the ventral stream supports primate object recognition through
something like a deep convolutional feature hierarchy, the
exact details of which are being modeled with ever-increasing
precision.

Here we describe an analogous pattern of results for ANN
models of human language, establishing a link between language
models, including transformer-based ANN architectures that
have revolutionized NLP in AI systems over the last 3 y, and fun-
damental computations of human language processing as
reflected in both neural and behavioral measures. Language
processing is known to depend causally on a left-lateralized fron-
totemporal brain network (16–22) (Fig. 1) that responds robustly
and selectively to linguistic input (23, 24), whether auditory or
visual (25, 26). Yet, the precise computations underlying language
processing in the brain remain unknown. Computational models
of sentence processing have previously been used to explain both
behavioral (27–41) and neural responses to linguistic input
(42–64). However, none of the prior studies have attempted
large-scale integrative benchmarking that has proven so valuable
in understanding key brain–behavior–computation relationships
in the ventral stream; instead, they have typically tested one or a
small number of models against a single dataset, and the same
models have not been evaluated on all three metrics of neural,
behavioral, and objective task performance. Previously tested
models have also left much of the variance in human neural/
behavioral data unexplained. Finally, until the rise of recent
ANNs (e.g., transformer architectures), language models did not
have sufficient capacity to solve the full linguistic problem that
the brain solves—to form a representation of sentence meaning
capable of performing a broad range of real-world language tasks
on diverse natural linguistic input. We are thus left with a collec-
tion of suggestive results but no clear sense of how close ANN
models are to fully explaining language processing in the brain,
or what model features are key in enabling models to explain
neural and behavioral data.

Our goal here is to present a systematic integrative modeling
study of language in the brain, at the scale necessary to discover
robust relationships between neural and behavioral measure-
ments from humans, and performance of models on language

tasks. We seek to determine not just which model fits empirical
data best but also what dimensions of variation across models
are correlated with fit to human data. This approach has not
been applied in the study of language or any other higher cog-
nitive system, and even in perception has not been attempted
within a single integrated study. Thus, we view our work more
generally as a template for how to apply the integrative bench-
marking approach to any perceptual or cognitive system.

Specifically, we examined the relationships between 43 diverse
state-of-the-art ANN language models (henceforth “models”)
across three neural language comprehension datasets (two fMRI,
one electrocorticography [ECoG]), as well as behavioral signatures
of human language processing in the form of self-paced reading
times, and a range of linguistic functions assessed via standard
engineering tasks from NLP. The models spanned all major classes
of existing ANN language approaches and included simple embed-
ding models [e.g., GloVe (65)], more complex recurrent neural
networks [e.g., LM1B (66)], and many variants of transformers or
attention-based architectures—including both “unidirectional-
attention” models [trained to predict the next word given the pre-
vious words, e.g., GPT (67)] and “bidirectional-attention” models
[trained to predict a missing word given the surrounding context,
e.g., BERT (68)].

Our integrative approach yielded four major findings. First,
models’ relative fit to neural data (neural predictivity or “brain
score”)—estimated on held-out test data—generalizes across
different datasets and imaging modality (fMRI and ECoG),
and certain architectural features consistently lead to more
brain-like models: Transformer-based models perform better
than recurrent networks or word-level embedding models, and
larger-capacity models perform better than smaller models.
Second, the best models explain nearly 100% of the explainable
variance (up to the noise ceiling) in neural responses to senten-
ces. This result stands in stark contrast to earlier generations of
models that have typically accounted for at most 30 to 50% of
the predictable neural signal. Third, across models, significant
correlations hold among all three metrics of model perfor-
mance: brain scores (fit to fMRI and ECoG data), behavioral
scores (fit to reading time), and model accuracy on the next-
word prediction task. Importantly, no other linguistic task was
predictive of models’ fit to neural or behavioral data. These
findings provide strong evidence for a classic hypothesis about
the computations underlying human language understanding,
that the brain’s language system is optimized for predictive
processing in the service of meaning extraction. Fourth, intrigu-
ingly, the scores of models initialized with random weights
(prior to training, but with a trained linear readout) are well
above chance and correlate with trained model scores, which
suggests that network architecture is an important contributor
to a model’s brain score. In particular, one architecture intro-
duced just in 2019, the generative pretrained transformer
(GPT-2), consistently outperforms all other models and
explains almost all variance in both fMRI and ECoG data from
sentence-processing tasks. GPT-2 is also arguably the most cog-
nitively plausible of the transformer models (because it uses
unidirectional, forward attention) and performs best overall as
an AI system when considering both natural language under-
standing and natural language generation tasks. Thus, even
though the goal of contemporary AI is to improve model
performance and not necessarily to build models of brain proc-
essing, this endeavor appears to be rapidly converging on archi-
tectures that might capture key aspects of language processing
in the human mind and brain.

Results
We evaluated a broad range of state-of-the-art ANN language
models on the match of their internal representations to three

2 of 12 j PNAS Schrimpf et al.
https://doi.org/10.1073/pnas.2105646118 The neural architecture of language: Integrative modeling converges on predictive processing

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 9
8.

21
7.

96
.8

 o
n 

Ju
ly

 7
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

98
.2

17
.9

6.
8.



human neural datasets. The models spanned all major classes
of existing language models (Methods, section 5 and SI
Appendix, Table S1). The neural datasets consisted of 1) fMRI
activations while participants read short passages, presented
one sentence at a time (across two experiments) that spanned
diverse topics [Pereira2018 dataset (45)]; 2) ECoG recordings
while participants read semantically and syntactically diverse
sentences, presented one word at a time [Fedorenko2016 data-
set (69)]; and 3) fMRI blood oxygen level–dependent (BOLD)
signal time series elicited while participants listened to ∼5-min-
long naturalistic stories [Blank2014 dataset (70)] (Methods, sec-
tions 1 through 3). Thus, the datasets varied in the imaging
modality (fMRI/ECoG), the nature of the materials (uncon-
nected sentences/passages/stories), the grain of linguistic units
to which responses were recorded (sentences/words/2-s-long
story fragments), and presentation modality (reading/listening).
In most analyses, we consider the overall results across the
three neural datasets; when considering the results for the indi-
vidual neural datasets, we give the most weight to Pereira2018
because it includes multiple repetitions per stimulus (sentence)
within each participant and quantitatively exhibits the highest
internal reliability (SI Appendix, Fig. S1). Because our research
questions concern language processing, we extracted neural
responses from language-selective voxels or electrodes that
were functionally identified by an extensively validated indepen-
dent “localizer” task that contrasts reading sentences versus
nonword sequences (69). This localizer robustly identifies the
frontotemporal language-selective network (Methods, sections 1
through 3).

To compare a given model to a given dataset, we presented
the same stimuli to the model that were presented to humans
in neural recording experiments and “recorded” the model’s
internal activations (Methods, sections 5 and 6 and Fig. 1). We
then tested how well the model recordings could predict the
neural recordings for the same stimuli, using a method origi-
nally developed for studying visual object recognition (1, 2).
Specifically, using a subset of the stimuli, we fit a linear regres-
sion from the model activations to the corresponding human
measurements, modeling the response of each voxel (Per-
eira2018)/electrode (Fedorenko2016)/brain region (Blank2014)

as a linear weighted sum of responses of different units from
the model. We then computed model predictions by applying
the learned regression weights to model activations for the
held-out stimuli and evaluated how well those predictions
matched the corresponding held-out human measurements by
computing Pearson’s correlation coefficient. We further nor-
malized these correlations by the extrapolated reliability of the
particular dataset, which places an upper bound (“ceiling”) on
the correlation between the neural measurements and any
external predictor (Methods, section 7 and SI Appendix, Fig.
S1). The final measure of a model’s performance (“score”) on
a dataset is thus Pearson’s correlation between model predic-
tions and neural recordings divided by the estimated ceiling
and averaged across voxels/electrodes/regions and participants.
We report the score for the best-performing layer of each
model (Methods, section 6 and SI Appendix, Fig. S10) but con-
trol for the generality of the layer choice in a train/test split (SI
Appendix, Fig. S2 B and C).

Specific Models Accurately Predict Human Brain Activity. We found
(Fig. 2 A and B) that specific models predict Pereira2018 and
Fedorenko2016 datasets with up to 100% predictivity relative to
the noise ceiling (Methods, section 7 and SI Appendix, Fig. S1).
These scores generalize to another metric, based on representa-
tional dissimilarity matrices (RDM), without any fitting (SI
Appendix, Fig. S2A). The Blank2014 dataset is also reliably pre-
dicted, but with lower predictivity. Models vary substantially in
their ability to predict neural data. Generally, embedding mod-
els such as GloVe do not perform well on any dataset. In
contrast, recurrent networks such as skip-thoughts, as well as
transformers such as BERT, predict large portions of the data.
The model that predicts the human data best across datasets is
GPT2-xl, a unidirectional-attention transformer model, which
predicts Pereira2018 and Fedorenko2016 at close to 100% of the
noise ceiling and is among the highest-performing models on
Blank2014 with 32% normalized predictivity. These scores are
higher in the language network than other parts of the brain
(SI Appendix, section SI-1). Intermediate layer representations
in the models are most predictive, significantly outperforming

"Beekeeping encourages the conservation of local 
habitats. It is in every beekeeper's interest..."

“If you were to journey to the North of England, you 
would come to a valley that is surrounded by moors 
as high as mountains. It is in this valley where you…”

“Alex was tired so he took a nap.”
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Fig. 1. Comparing ANN models of language processing to human language processing. We tested how well different models predict measurements of
human neural activity (fMRI and ECoG) and behavior (reading times) during language comprehension. The candidate models ranged from simple embed-
ding models to more complex recurrent and transformer networks. Stimuli ranged from sentences to passages to stories and were 1) fed into the models
and 2) presented to human participants (visually or auditorily). Models’ internal representations were evaluated on three major dimensions: their ability
to predict human neural representations (brain score, extracted from within the frontotemporal language network [e.g., Fedorenko et al. (71)]; the net-
work topography is schematically illustrated in red on the template brain above); their ability to predict human behavior in the form of reading times
(behavioral score); and their ability to perform computational tasks such as next-word prediction (computational task score). Consistent relationships
between these measures across many different models reveal insights beyond what a single model can tell us.
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representations at the first and output layers (Fig. 2C and SI
Appendix, Fig. S10).
Model scores are consistent across experiments/datasets. To test
the generality of the model representations, we examined the
consistency of model brain scores across datasets. Indeed, if a
model achieves a high brain score on one dataset it tends to
also do well on other datasets (Fig. 2D), ruling out the possibil-
ity that we are picking up on spurious, dataset-idiosyncratic
predictivity and suggesting that the models’ internal representa-
tions are general enough to capture brain responses to diverse
linguistic materials presented visually or auditorily, and across
three independent sets of participants. Specifically, model brain
scores across the two experiments in Pereira2018 (overlapping
sets of participants) correlate at r = 0.94 (Pearson here and
elsewhere, P << 0.00001), scores from Pereira2018 and Fedor-
enko2016 correlate at r = 0.50 (P < 0.001), and from Per-
eira2018 and Blank2014 at r = 0.63 (P < 0.0001).

Next-Word-Prediction Task Performance Selectively Predicts Brain
Scores. In the critical test of which computations might underlie
human language understanding, we examined the relationship
between the models’ ability to predict an upcoming word and
their brain scores. Words from the WikiText-2 dataset (72)
were sequentially fed into the candidate models. We then fit a
linear classifier (over words in the vocabulary; n = 50,000) from
the last layer’s feature representation (frozen, i.e., no fine-tun-
ing) on the training set to predict the next word and evaluated
performance on the held-out test set (Methods, section 8).
Indeed, next-word-prediction task performance robustly pre-
dicts brain scores (Fig. 3A; r = 0.44, P < 0.01, averaged across
datasets). The best language model, GPT2-xl, also achieves the
highest brain score (see previous section). This relationship
holds for model variants within each model class—embedding
models, recurrent networks, and transformers—ruling out the
possibility that this correlation is due to between-class differ-
ences in next-word-prediction performance.

To test whether next-word prediction is special in this
respect, we asked whether model performance on any language
task correlates with brain scores. As with next-word prediction,
we kept the model weights fixed and only trained a linear

readout. We found that performance on tasks from the General
Language Understanding Evaluation (GLUE) benchmark col-
lection (73–80)—including grammaticality judgments, sentence
similarity judgments, and entailment—does not predict brain
scores (Fig. 3 B and C). The difference in the strength of corre-
lation between brain scores and the next-word-prediction task
performance vs. the GLUE tasks performance is highly reliable
(P << 0.00001, t test over 1,000 bootstraps of scores and corre-
sponding correlations; Methods, section 9). This result suggests
that optimizing for predictive representations may be a critical
shared objective of biological and artificial neural networks for
language, and perhaps more generally (81, 82)

Brain Scores and Next-Word-Prediction Task Performance Correlate
with Behavioral Scores. Beyond internal neural representations,
we tested the models’ ability to predict external behavioral out-
puts because, ultimately, in integrative benchmarking we strive
for a computationally precise account of language processing
that can explain both neural response patterns and observable
linguistic behaviors. We chose a large corpus (n = 180 partici-
pants) of self-paced reading times for naturalistic story materi-
als [Futrell2018 dataset (83)]. Per-word reading times provide a
theory-neutral measure of incremental comprehension diffi-
culty, which has long been a cornerstone of psycholinguistic
research in testing theories of sentence comprehension (28, 33,
83–87) and which were recently shown to robustly predict neu-
ral activity in the language network (88).
Specific models accurately predict reading times. We regressed
each model’s last layer’s feature representation (i.e., closest to
the output) against reading times and evaluated predictivity on
held-out words. As with the neural datasets, we observed a
spread of model ability to capture human behavioral data, with
models such as GPT2-xl and AlBERT-xxlarge predicting these
data close to the noise ceiling (Fig. 4A and refs. 89 and 90).
Brain scores correlate with behavioral scores. To test whether
models with the highest brain scores also predict reading times
best, we compared models’ neural predictivity (across datasets)
with those same models’ behavioral predictivity. Indeed, we
observed a strong correlation (Fig. 4B; r = 0.65, P << 0.0001),
which also holds for the individual neural datasets (Fig. 4B,
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Fig. 2. Specific models accurately predict neural responses consistently across datasets. (A) We compared 43 computational models of language process-
ing (ranging from embedding to recurrent and bi- and unidirectional transformer models) in their ability to predict human brain data. The neural data-
sets include fMRI voxel responses to visually presented (sentence-by-sentence) passages (Pereira2018), ECoG electrode responses to visually presented
(word-by-word) sentences (Fedorenko2016), and fMRI ROI responses to auditorily presented ∼5-min-long stories (Blank2014). For each model, we plot the
normalized predictivity (“brain score”), i.e., the fraction of ceiling (gray line; Methods, section 7 and SI Appendix, Fig. S1) that the model can predict. Ceil-
ing levels are 0.32 (Pereira2018), 0.17 (Fedorenko2016), and 0.20 (Blank2014). Model classes are grouped by color (Methods, section 5 and SI Appendix,
Table S1). Error bars (here and elsewhere) represent median absolute deviation over subject scores. (B) Normalized predictivity of GloVe (a low-
performing embedding model) and GPT2-xl (a high-performing transformer model) in the language-responsive voxels in the left hemisphere of a repre-
sentative participant from Pereira2018 (also SI Appendix, Fig. S3). (C) Brain score per layer in GPT2-xl. Middle-to-late layers generally yield the highest
scores for Pereira2018 and Blank2014 whereas earlier layers better predict Fedorenko2016. This difference might be due to predicting individual word
representations (within a sentence) in Fedorenko2016, as opposed to whole-sentence representations in Pereira2018. (D) To test how well model brain
scores generalize across datasets, we correlated 1) two experiments with different stimuli (and some participant overlap) in Pereira2018 (obtaining a very
strong correlation) and 2) Pereira2018 brain scores with the scores for each of Fedorenko2016 and Blank2014 (obtaining lower but still highly significant
correlations). Brain scores thus tend to generalize across datasets, although differences between datasets exist which warrant the full suite of datasets.
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Inset and SI Appendix, Fig. S5). These results suggest that fur-
ther improving models’ neural predictivity will simultaneously
improve their behavioral predictivity.
Next-word-prediction task performance correlates with behav-
ioral scores. Next-word-prediction task performance is predic-
tive of reading times (Fig. 4C; r = 0.67, P << 0.0001), in line
with earlier studies (91, 92) and thus connecting all three meas-
ures of performance: brain scores, behavioral scores, and task
performance on next-word prediction.

Model Architecture Contributes to Model-to-Brain Relationship.
The brain’s language network plausibly arises through a combi-
nation of evolutionary and learning-based optimization. In a
first attempt to test the relative importance of the models’
intrinsic architectural properties vs. training-related features, we
performed two analyses. First, we found that architectural fea-
tures (e.g., number of layers) but neither of the features related
to training (dataset and vocabulary size) significantly predicted
improvements in model performance on the neural data (SI
Appendix, Section SI-3, Fig. S8, and Table S1). These results
align with prior studies that had reported that architectural dif-
ferences affect model performance on normative tasks like next-
word prediction after training and define the representational
space that the model can learn (93–95). Second, we computed
brain scores for the 43 models without training, i.e., with initial

(random) weights. Note that the predictivity metric still trains a
linear readout on top of the model representations. Surpris-
ingly, even with no training, several models achieved reasonable
scores (Fig. 5), consistent with recent results of models in high-
level visual cortex (95) as well as findings on the power of ran-
dom initializations in NLP (96–98). For example, across the
three datasets, untrained GPT2-xl achieves an average predictiv-
ity of ∼51%, only ∼20% lower than the trained network. A
similar trend is observed across models: Training generally
improves brain scores, on average by 53%. Across models,
the untrained scores are strongly predictive of the trained scores
(r = 0.74, P << 0.00001), indicating that models that
already perform well with random weights improve further
with training.

To ensure the robustness and generalizability of the results for
untrained models, and to gain further insights into these results,
we performed four additional analyses (SI Appendix, Fig. S8).
First, we tested a random context-independent embedding with
equal dimensionality to the GPT2-xl model but no architectural
priors and found that it predicts only a small fraction of the neu-
ral data, on average below 15%, suggesting that a large feature
space alone is not sufficient (SI Appendix, Fig. S8A). Second, to
ensure that the overlap between the linguistic materials (words,
bigrams, etc.) used in the train and test splits is not driving the
results, we quantified the overlap and found it to be low,
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Fig. 4. Behavioral scores, brain scores, and next-word-prediction task performance are pairwise correlated. (A) Behavioral predictivity of each model on
Futrell2018 reading times (notation similar to Fig. 2). Ceiling level is 0.76. (B) Models’ neural scores aggregated across the three neural datasets (or for
each dataset individually; Inset and SI Appendix, Fig. S5) correlate with behavioral scores. (C) Next-word-prediction task performance (Fig. 3) correlates
with behavioral scores. Performance on other language tasks (from the GLUE benchmark collection) does not correlate with behavioral scores (SI
Appendix, Fig. S6).
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especially for bi- and trigrams (SI Appendix, Fig. S8B). Third, to
ensure that the linear regression used in the predictivity metric
did not artificially inflate the scores of untrained models, we used
an alternative metric—RDM—that does not involve any fitting.
Scores of untrained models on the predictivity metric generalized

to scores on the RDM metric (SI Appendix, Fig. S8D). Finally,
we examined the performance of untrained models with a trained
linear readout on the next-word-prediction task and found per-
formance trends similar to those we observed for the neural
scores (SI Appendix, Fig. S8C), confirming the representational
power of untrained representations.

Discussion
Summary of Key Results and Their Implications. Our results, sum-
marized in Fig. 6, show that specific ANN language models can
predict human neural and behavioral responses to linguistic input
with high accuracy: The best models achieve, on some datasets,
perfect predictivity relative to the noise ceiling. Model scores cor-
relate across neural and behavioral datasets spanning recording
modalities (fMRI, ECoG, and reading times) and diverse materi-
als presented visually and auditorily across four sets of partici-
pants, establishing the robustness and generality of these findings.
Critically, both neural and behavioral scores correlate with model
performance on the normative next-word-prediction task—but
not other language tasks. Finally, untrained models with random
weights (and a trained linear readout) produce representations
beginning to approximate those in the brain’s language network.
Predictive language processing. Underlying the integrative
modeling framework, implemented here in the cognitive
domain of language, is the idea that large-scale neural networks
can serve as hypotheses of the computations conducted in the
brain. We here identified some models—unidirectional-
attention transformer architectures—that accurately capture
brain activity during language processing. We then began dis-
secting variations across the range of model candidates to
explain why they achieve high brain scores. Two core findings
emerged, both supporting the idea that the human language
system is optimized for predictive processing. First, we found
that the models’ performance on the next-word-prediction task,
but not other language tasks, is correlated with neural predic-
tivity (see ref. 51 for related evidence of fine-tuning of one
model on tasks other than next-word prediction leading to
worse model-to-brain fit). Recent preprints conceptually repli-
cate and extend this basic finding (88, 90, 99, 100). Language
modeling (predicting the next word) is the task of choice in the
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We evaluate untrained models by keeping weights at their initial random
values. The remaining representations are driven by architecture alone
and are tested on the neural datasets (Fig. 2). Across the three datasets,
architecture alone yields representations that predict human brain activity
considerably well. On average, training improves model scores by 53%.
For Pereira2018, training improves predictivity the most whereas for
Fedorenko2016 and Blank2014, training does not always change—and for
some models even decreases—neural scores (SI Appendix, Fig. S7). The
untrained model performance is consistently predictive of its performance
after training across and within (Inset) datasets.
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NLP community: It is simple, unsupervised, scalable, and
appears to produce the most generally useful, successful lan-
guage representations. This is likely because language modeling
encourages a neural network to build a joint probability model
of the linguistic signal, which implicitly requires sensitivity to
diverse kinds of regularities in the signal.

Second, we found that the models that best match human
language processing are precisely those that are trained to pre-
dict the next word. Predictive processing has advanced to the
forefront of theorizing in cognitive science (101–109) and neu-
roscience (81, 110–113), including in the domain of language
(39, 114). The rich sources of information that comprehenders
combine to interpret language—including lexical and syntactic
information, world knowledge, and information about others’
mental states (115–119)—can be used to make informed
guesses about how the linguistic signal may unfold, and much
behavioral and neural evidence now suggests that readers and
listeners indeed engage in such predictive behavior (33, 47, 114,
120, 121). An intriguing possibility is therefore that both the
human language system and successful ANN models of lan-
guage are optimized to predict upcoming words in the service
of efficient meaning extraction.

Going beyond the broad idea of prediction in the neurosci-
ence of language, the work presented here validates, refines,
and computationally implements an explicit account of predic-
tive processing: We were able to accurately predict (relative to
the noise ceiling) activity across voxels as well as neuronal pop-
ulations in human cortex during the processing of sentences.
We quantitatively test the predictive processing hypothesis at
the level of voxel/electrode/fROI (functional region of interest)
responses and, through the use of end-to-end models, related
neural mechanisms to performance of models on computa-
tional tasks. Moreover, we were able to reject multiple alterna-
tive hypotheses about the objective of the language system:
Model performance on diverse benchmarks from the GLUE
suite of benchmarks (73), including judgments about syntactic
and semantic properties of sentences, was not predictive of
brain or behavioral scores. The best-performing computational
models identified in this work serve as computational explana-
tions for the entire language processing pipeline from word
inputs to neural mechanisms to behavioral outputs. These best-
performing models can now be further dissected, as well as
tested on new diverse, linguistic inputs in future experiments,
as discussed below.
Importance of architecture. We also found that architecture is
an important contributor to the models’ match to human brain
data: Untrained models with a trained linear readout per-
formed well above chance in predicting neural activity, and this
finding held under a series of controls to alleviate concerns that
it could be an artifact of our training or testing methodologies.
This result is consistent with findings in models of early (5, 7,
95) and high-level visual processing (95) and speech perception
(122), as well as recent results in NLP (96–98), but it raises
important questions of interpretation in the context of human
language. If we construe model training as analogous to learn-
ing in human development, then human cortex might already
provide a sufficiently rich structure that allows for the relatively
rapid acquisition of language (123–125). In that analogy, the
human research community’s development of new architectures
such as the transformer networks that perform well in both
NLP tasks and neural language modeling could be akin to reca-
pitulating evolution (126), or perhaps, more accurately, selec-
tive breeding with genetic modification: Structural changes are
tested and the best-performing ones are incorporated into the
next generation of models. Importantly, this process still opti-
mizes for language modeling, only implicitly and on a different
timescale from biological and cultural evolutionary mechanisms
conventionally studied in brain and language.

More explicitly, but speculatively, it is possible that trans-
former networks can work as brain models of language even
without extensive training because the hierarchies of local spa-
tial filtering and pooling as found in convolutional as well as
attention-based networks are a generally applicable brain-like
mechanism to extract abstract features from natural signals.
Regardless of the exact filter weights, transformer architectures
build on word embeddings that capture both semantic and
syntactic features of words and integrate contextually weighted
predictions across scales such that contextual dependencies are
captured at different scales in different kernels. The represen-
tations in such randomized architectures could thus reflect a
kind of multiscale, spatially smoothed average (over consecu-
tive inputs) of word embeddings, which might capture the
statistical gist-like processing of language observed in both
behavioral studies (34, 38, 127) and human neuroimaging
(128). The weight sharing within architectural sublayers
(“multihead attention”) introduced by combinations of query-
key-value pairs in transformers might provide additional consis-
tency and coverage of representations. Relatedly, an idea
during early work on perceptrons was to have random projec-
tions of input data into high-dimensional spaces and to then
only train thin readouts on top of these projections. This
was motivated by Cover’s theorem, which states that nonli-
nearly separable data can likely be linearly separated after pro-
jection into a high-dimensional space (129). These ideas have
successfully been applied to kernel machines (130) and are
more recently explored again with deep neural networks (131);
in short, it is possible that even random features with the right
multiscale structure in time and space could be more powerful
for representing human language than is currently understood.
Finally, it is worth noting that the initial weights in the net-
works we study stem from weight initializer distributions that
were chosen to provide solid starting points for contemporary
architectures and lead to reasonable initial representations that
model training further refines. These initial representations
could thus include some important aspects of language struc-
ture already. A concrete test for these ideas would be the fol-
lowing: Construct model variants that average over word
embeddings at different scales and compare these models’ rep-
resentations with those of different layers in untrained trans-
former architectures as well as the neural datasets. More
detailed analyses, including minimal-pair model variant com-
parisons, will be needed to fully separate the representational
contributions of architecture and training.

Limitations and Future Directions. These discoveries pave the way
for many exciting future directions. The most brain-like lan-
guage models can now be investigated in richer detail, ideally
leading to intuitive theories of their inner workings. Such
research is much easier to perform on models than on biologi-
cal systems, given that all their structure and weights are easily
accessible and manipulable (132, 133). For example, controlled
comparisons of architectural variants and training objectives
could define the necessary and sufficient conditions for human-
like language processing (134), synergizing with parallel ongo-
ing efforts in NLP to probe ANNs’ linguistic representations
(135–137). Here, we worked with off-the-shelf models and com-
pared their match to neural data based on their performance
on the next-word-prediction task vs. other tasks. Retraining
many models on many tasks from scratch might determine
which features are most important for brain predictivity but is
currently prohibitively expensive due to the vast space of hyper-
parameters. Further, the fact that language modeling is inher-
ently built into the evolution of language models by the NLP
community, as noted above, may make it impossible to fully
eliminate its influences on the architecture even for models
trained from scratch on other tasks. Similarly, here, we
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leveraged existing neural datasets. This work can be expanded
in many new directions, including 1) assembling a wider range
of publicly available language datasets for model testing [cf.
vision (2, 4)]; 2) collecting data on new language stimuli for
which different models make maximally different predictions
[cf. vision (138)], including sampling a wider range of language
stimuli (e.g., naturalistic dialogs/conversations); 3) modeling
the fine-grained temporal trajectories of neural responses to
language in data with high temporal resolution (which requires
computational accounts that make predictions about represen-
tational dynamics); and 4) querying models on the sentence
stimuli that elicit the strongest responses in the language net-
work to generate hypotheses about the critical response-driving
feature/feature spaces, and perhaps to discover new organizing
principles of the language system [cf. vision (139, 140)].

One of the major limiting factors in modeling the brain’s
language network is the availability of adequate recordings.
Although an increasing number of language fMRI, magnetoen-
cephalography (MEG), electroencephalography, and intracranial
datasets are becoming publicly available, they often lack key prop-
erties for testing computational language models. In particular,
what is needed are data with high signal-to-noise ratio, where
neural responses to a particular stimulus (e.g., sentence) can
be reliably estimated. However, most past language neuroscience
research has focused on coarse distinctions (e.g., sentences with
vs. without semantic violations, or sentences with different syntac-
tic structures); as a result, any single sentence is generally only
presented once, and neural responses are averaged across all the
sentences within a “condition” (in contrast, monkey physiology
studies of vision typically present each stimulus dozens of times to
each animal, e.g. ref. 141). (Studies that use “naturalistic”
language stimuli like stories or movies also typically present the
stimuli once, although naturally occurring repetitions of words/n-
grams can be useful.) One of the neural datasets in the current
study (Pereira2018) presented each sentence thrice to each subject
and exhibited the highest ceiling (0.32; cf. Fedorenko2016: 0.17,
Blank2014: 0.20). However, even this ceiling is low relative to sin-
gle cell recordings in the primate ventral stream [e.g., 0.82 for IT
recordings (2)]. Such high reliability may not be attainable for
higher-level cognitive domains like language, where processing is
unlikely to be strictly bottom-up/stimulus-driven. However, this is
an empirical question that past work has not attempted to answer
and that will be important in the future for building models that
can accurately capture the neural mechanisms of language.

How can we develop models that are even more brain-like?
Despite impressive performance on the datasets and metrics
here, ANN language models are far from human-level perfor-
mance in the hardest problem of language understanding. An
important open direction is to integrate language models like
those used here with models and data resources that attempt to
capture aspects of meaning important for commonsense world
knowledge (e.g., refs. 142–146). Such models might capture not
only predictive processing in the brain—what word is likely to
come next—but also semantic parsing, mapping language into
conceptual representations that support grounded language
understanding and reasoning (142). The fact that language
models lack meaning and focus on local linguistic coherence
(90, 147) may explain why their representations fall short of
ceiling on Blank2014, which uses story materials and may there-
fore require long-range contexts.

Another key missing piece in the mechanistic modeling of
human language processing is a more detailed mapping from
model components onto brain anatomy. In particular, aside
from the general targeting of the frontotemporal language net-
work, it is unclear which parts of a model map onto which com-
ponents of the brain’s language-processing mechanisms. In
models of vision, for instance, attempts are made to map ANN
layers and neurons onto cortical regions (3) and subregions

(148). However, whereas function and its mapping onto anat-
omy is at least coarsely defined in the case of vision (149), a
similar mapping is not yet established in language beyond the
broad distinction between perceptual processing and higher-
level linguistic interpretation (e.g., ref. 21). The ANN models
of human language processing identified in this work might
also serve to uncover these kinds of anatomical distinctions for
the brain’s language network—perhaps, akin to vision, groups
of layers relate to different cortical regions and uncovering
increased similarity to neural activity of one group over others
could help establish a cortical hierarchy. The brain network
that supports higher-level linguistic interpretation—which we
focus on here—is extensive and plausibly contains meaningful
functional dissociations, but how the network is precisely subdi-
vided and what respective roles its different components play
remains debated. Uncovering the internal structure of the
human language network, for which intracranial recording
approaches with high spatial and temporal resolution may
prove critical (150, 151), would allow us to guide and constrain
models of tissue-mapped mechanistic language processing.
More precise brain-to-model mappings would also allow us to
test the effects of perturbations on models and compare them
against perturbation effects in humans, as assessed with lesion
studies or reversible stimulation. More broadly, anatomically
and functionally precise models are a required software compo-
nent of any form of brain–machine interface.

Conclusions
Taken together, our findings suggest that predictive ANNs serve
as viable hypotheses for how predictive language processing
is implemented in human neural tissue. They lay a critical foun-
dation for a promising research program synergizing high-
performing mechanistic models of NLP with large-scale neural
and behavioral measurements of human language comprehen-
sion in a virtuous cycle of integrative modeling: Testing model
ability to predict neural and behavioral measurements, dissect-
ing the best-performing models to understand which compo-
nents are critical for high brain predictivity, developing better
models leveraging this knowledge, and collecting new data to
challenge and constrain the future generations of neurally plau-
sible models of language processing.

Methods
More detailed information can be found in SI Appendix, SI-Methods.

1) Neural dataset 1: fMRI (Pereira2018). We used the data from Pereira et
al.’s (45) experiments 2 (n = 9) and 3 (n = 6) (10 unique participants). Stim-
uli for experiment 2 consisted of 384 sentences (96 text passages, four sen-
tences each), and stimuli for experiment 3 consisted of 243 sentences (72
text passages, three or four sentences each). Sentences were presented on
the screen one at a time for 4 s.

2) Neural dataset 2: ECoG (Fedorenko2016). We used the data from Fedor-
enko et al. (69) (n = 5). Stimuli consisted of 80 hand-constructed eight-
word-long semantically and syntactically diverse sentences and 80 lists of
nonwords; we selected the 52 sentences that were presented to all partici-
pants. Materials were presented visually one word at a time for 450 or
700 ms.

3) Neural dataset 3: fMRI (Blank2014). We used the data from Blank et al.
(70) (n = 5, 5 of the 10 participants that have been exposed to the same
materials). Stimuli consisted of stories from the publicly available Natural
Stories Corpus (83), which are stories adapted from existing texts (fairy
tales and short stories). Stories were presented auditorily (∼5 min in dura-
tion each).

4) Behavioral dataset: Self-paced reading (Futrell2018). We used the data
from Futrell et al. (83) (n = 179, excluding one participant with too few
data points). Stimuli consisted of 10 stories from the Natural Stories Corpus
(83) (same as in Blank2014, plus two additional stories). Stories were pre-
sented online (on Amazon Mechanical Turk) visually in a dashed moving
window display (152), with any given participant reading between 5 and
all 10 stories.
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5) Computational models. We tested 43 language models that were selected
to sample a broad range of computational designs across three major
types of architecture: embeddings [GloVe (65), ETM (153), word2vec
(154)], recurrent architectures [lm_1b (66), skip-thoughts (155)], and
attention-based “transformers” [from the HuggingFace library (156), with
variants of BERT (68), RoBERTa (157), XLM (158), XLM-RoBERTa (159),
XLNet (160), CTRL (161), T5 (162), AlBERT (163), and GPT (67, 164)].

6) Comparison of models to brain measurements. We treated the model
representation at each layer separately and tested how well it could
predict human recordings. To generate predictions, we used 80% of the
stimuli tofit a linear regression from the corresponding 80% ofmodel rep-
resentations to the corresponding 80% of human recordings. We applied
the regression on model representations of the held-out 20% of stimuli to
generate model predictions, which we then compared against the held-
out 20% of human recordings with a Pearson correlation. This process was
repeated five times, leaving out different 20% of stimuli each time.
We aggregated voxel/electrode/ROI predictivity scores by taking the
median of scores for each participant’s voxels/electrodes/ROIs and
then computing the median across participants. Finally, this score was
divided by the estimated ceiling value (see below) to yield a final score in
the range [0, 1].

7) Estimation of ceiling. Due to intrinsic noise in biological measurements,
we estimated a ceiling value to reflect howwell the best possible model of
an average human could perform. In brief, we subsampled the data, desig-
nating one subject as the prediction target and treating the recordings of
the remaining subject pool as the source representations to predict from
(see above). To obtain the most conservative ceiling estimate, we extrapo-
lated the size of the subject pool and used the final ceiling value when
extrapolating to infinitelymany humans.

8) Language modeling. To assess models’ performance on the normative
next-word-prediction task, we used WikiText-2 (165), a dataset of 720
Wikipedia articles. We sequentially fed tokens into models (rather than
chunks of tokens) and captured representations at each step from each
model’s penultimate layer. To predict the next word, we fit a linear
decoder—trained with a cross-entropy loss—from those representations
to the next token. We kept weights in the network frozen rather than

fine-tuning the entire model in order to maintain the same model repre-
sentations that were used in model-to-brain and model-to-behavior
comparisons. These choices led to worse model performances than state-
of-the-art, but we ensured that our pipeline could reproduce published
results when fine-tuning the entire model and increasing the batch size.
The final language modeling score is reported as the perplexity on the
held-out test set.

9) Statistical tests. Model-to-brain predictivity scores are reported as the
Pearson correlation coefficient (r). Error estimates are computed with a
bootstrapped correlation coefficient (1,000 iterations), leaving out 10% of
scores and computing r on the remaining 90% held-out scores. All P values
less than 0.05 are summarized with an asterisk, less than 0.005 with two
asterisks, less than 0.0005 with three asterisks, and less than 0.00005 with
four asterisks. For interaction tests, we used two-sided t tests with 1,000
bootstraps and 90% of samples per bootstrap.

Data Availability. Code, data, and models are available at GitHub (https://
github.com/mschrimpf/neural-nlp). All other study data are included in the
article and/or SI Appendix. Previously published data were used for this work
[Pereira et al. (45), Blank et al. (70), Fedorenko et al. (69), and Futrell et al. (83)].
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