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Abstract 

Representations from artificial neural network (ANN) language models have been shown to 

predict human brain activity in the language network. To understand what aspects of linguistic 

stimuli contribute to ANN-to-brain similarity, we used an fMRI dataset of responses to n=627 

naturalistic English sentences (Pereira et al., 2018) and systematically manipulated the stimuli for 

which ANN representations were extracted. In particular, we i) perturbed sentences’ word order, 

ii) removed different subsets of words, or iii) replaced sentences with other sentences of varying 

semantic similarity. We found that the lexical semantic content of the sentence (largely carried by 

content words) rather than the sentence’s syntactic form (conveyed via word order or function 

words) is primarily responsible for the ANN-to-brain similarity. In follow-up analyses, we found 

that perturbation manipulations that adversely affect brain predictivity also lead to more divergent 

representations in the ANN’s embedding space and decrease the ANN’s ability to predict 

upcoming tokens in those stimuli. Further, results are robust to whether the mapping model is 

trained on intact or perturbed stimuli, and whether the ANN sentence representations are 

conditioned on the same linguistic context that humans saw. The critical result—that lexical-

semantic content is the main contributor to the similarity between ANN representations and neural 

ones—aligns with the idea that the goal of the human language system is to extract meaning from 

linguistic strings. Finally, this work highlights the strength of systematic experimental 

manipulations for evaluating how close we are to accurate and generalizable models of the human 

language network. 
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1. Introduction 

Research in psycholinguistics and cognitive neuroscience of language strives to understand the 

representations and algorithms that support human comprehension and production abilities. Until 

recently, mechanistic accounts of human language processing have been out of reach. However, 

artificial neural network (ANN) language models now hold substantial promise for developing and 

evaluating computationally precise hypotheses about language processing. In particular, 

contemporary ANN language models achieve impressive performance on a variety of linguistic 

tasks (e.g., Devlin et al., 2018; Liu et al., 2019; Brown et al., 2020; Rae et al., 2021; Chowdhery 

et al., 2022; OpenAI, 2023). Furthermore, representations extracted from ANN language models—

especially unidirectional attention Transformer architectures like GPT2 (Radford et al., 2019) can 

explain substantial variance in brain activity recorded from the human language network using 

regression-based evaluation metrics (e.g., Jain & Huth, 2018; Gauthier & Levy, 2019; Toneva & 

Wehbe, 2019; Schrimpf et al., 2021; Caucheteux & King, 2022; Goldstein et al., 2022; Hosseini 

et al., 2022; Kumar et al., 2022; Oota et al., 2022; Pasquiou et al., 2022). This correspondence has 

been suggested to derive, at least in part, from the convergence of the ANNs’ linguistic 

representations with those in the human brain (Schrimpf et al., 2021; Caucheteux & King, 2022; 

Goldstein et al., 2022; Hosseini et al., 2022), despite the vast differences in their learning and 

architecture (e.g., Huebner & Willits, 2021; Warstadt & Bowman, 2022). 

 

However, many questions remain about the factors that contribute to ANN-to-brain mapping, i.e., 

the ability to predict brain responses from ANN representations. One critical question concerns 

the aspects of linguistic content and form that play a role. To shed light on this question, we used 
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a published fMRI dataset (Pereira et al., 2018) where brain responses were collected from ten 

native speakers of English as they read syntactically and semantically diverse passages, consisting 

of several sentences each. We reproduced the result of the top-performing brain-encoding ANN 

language model in Schrimpf et al. (2021)—GPT2-xl (Radford et al., 2019)—on this dataset, and 

investigated what drives the model’s brain predictivity (or ‘brain score’; Schrimpf et al., 2018). In 

particular, we evaluated the contributions to accurate mapping of sentence meaning (largely 

carried by content words) and syntactic form (conveyed via word order and function words), along 

with superficial control features, like sentence length. To do so, we performed 12 sets of 

experiments: 3 categories of linguistic manipulations across 4 variants of what we term here 

‘computational experimental design’, as elaborated next. 

 

First, we systematically manipulated the linguistic stimuli in 3 ways: by altering the word order of 

the sentence (across 7 conditions; see Methods; Perturbation manipulation conditions for details), 

omitting different subsets of words (across 5 conditions), and replacing a sentence with sentences 

of different degrees of semantic relatedness (across 4 conditions). Some of these manipulations 

disrupt the syntactic form of the sentence (e.g., changing the order of the words or removing the 

function words); whereas other manipulations affect sentence meaning (e.g., removing the content 

words or replacing a sentence with a semantically unrelated sentence). We asked how well ANN 

representations for the resulting altered stimuli (across the 16 conditions) can predict neural 

responses compared to the ANN representations of a) the original, unaltered sentence and b) a 

control, length-matched condition (a random list of words). Next, we explored possible causes for 

the differential effects of these manipulations on brain predictivity by examining the changes in 

the ANN representations and next-word prediction task performance as a function of stimulus 
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alterations. Finally, to evaluate the robustness of the results to the computational experiment 

design, we performed all three types of linguistic manipulations across four experimental set-ups, 

crossing i) whether the model that maps from stimuli to brain representations was trained on intact 

or perturbed stimuli; and ii) whether the ANN representations of the target sentences were 

contextualized with respect to the preceding sentences in a passage or not. 
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Figure 1. Overview of perturbation manipulation conditions and the ANN-to-brain mapping approach.  

A. Overview of perturbation manipulation conditions. An example (original) sentence is illustrated together with an 

example of the stimulus in a sample condition from each of the three types of perturbation manipulations (word-order 

manipulations, information-loss manipulations, and semantic-distance manipulations), as detailed in Methods; 

Perturbation manipulation conditions. B. Overview of the ANN-to-brain mapping approach. Brain data from human 

participants (n=10) were recorded while they read intact sentences using functional magnetic resonance imaging 

(fMRI) (Pereira et al., 2018). Brain data consisted of voxel responses within the language-selective network 

(individually defined using an independent localizer task; Fedorenko et al., 2010) for each of the 10 participants. 

Following Schrimpf et al. (2021), we divided the stimuli (i.e., sentences) into training/test sets. We then retrieved 

ANN model representations for the stimuli and fitted a linear ANN-to-brain mapping model (M) from the ANN 

representations of the training stimuli to each single voxel’s (within the language network) corresponding recordings 

for those stimuli (the fitting process is not illustrated in this graphic). Next, we tested the ANN-to-brain mapping 

model (M) on the ANN representations of the held-out test stimuli to generate predicted brain responses for those 

stimuli, for each voxel (illustrated by the gradient arrows). Lastly, we compared predicted versus actual brain 

responses for each voxel using the Pearson correlation coefficient. This process was repeated five times, holding out 

a different set of 20% of stimuli each time. ANN representations were obtained using two approaches (for the 

motivation and details, see Methods; Manipulations of computational experimental design): (1) TrainIntact-

TestPerturbed, where ANN representations for the training set were obtained from the original, intact stimuli, whereas 

the ANN representations for the test set were obtained from the perturbed stimuli; and (2) TrainPerturbed-

TestPerturbed, where ANN representations for the training and test set were obtained from the perturbed stimuli. 

These two approaches were crossed with whether the preceding sentences in the passage were included as 

contextualizing input for the ANN (not depicted). 

The GPT2 illustration was adapted from Radford et al. (2018). 

 

Manipulations of linguistic stimuli 
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Language allows its users to package meanings into sequences of words. Content words, like 

nouns, verbs and adjectives (which carry the most information in a sentence, as can be quantified 

using information-theoretic measures; e.g., Shannon, 1948) have to be selected, so as to capture 

the right word-level meanings, and then they have to be assembled into phrases and sentences 

according to the rules of the language. The assembly process includes ordering the words in a 

particular way as well as adding appropriate inflectional morphological markers and function 

words, like determiners and prepositions. The result of all these operations is a meaningful and 

well-formed sentence. Here we evaluate the relative importance of different aspects of linguistic 

stimuli (sentences) for ANN-to-brain mapping. To do so, we systematically manipulate the 

sentences across three manipulation categories (Figure 1A; Table 1) before passing them into the 

ANN and use the resulting ANN model representations to predict brain responses (Figure 1B). 

 

i)  Word-order manipulations 

The first class of manipulations targets the order of the words in the sentence. Word order is an 

important cue to how words relate during sentence comprehension (e.g., Bever, 1970; Kimball, 

1973). However, word order rigidity varies across languages, with some languages exhibiting 

flexible orderings, pointing to a more limited role of word order, at least in those languages (e.g., 

Hale, 1983; Dryer & Haspelmath, 2013; Jackendoff & Wittenberg, 2014). Moreover, work in 

psycholinguistics has shown that comprehension is highly robust to errors in the linguistic input, 

including word order errors, as long as a plausible meaning can be recovered. For example, given 

the sentence The mother gave the candle the daughter, people typically infer the intended meaning 

to be the more plausible The mother gave the daughter the candle, suggesting that word order 

information can be overridden in favor of a plausible meaning (e.g., Levy et al., 2009; Gibson et 
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al., 2013). Furthermore, word-order transpositions, as in You that read wrong again!, often go 

unnoticed during sentence reading (Mirault et al., 2018; Wen et al., 2021). 

 

Similarly, recent evidence from neuroscience has shown that the human language network—a set 

of brain areas that are selectively and robustly activated when humans process language (e.g., 

Fedorenko et al., 2011; Regev et al., 2013; Fedorenko & Thompson-Schill, 2014; Lipkin et al., 

2022)—exhibits the same amount of activation to word-order-manipulated sentences as to intact 

ones as long as the pointwise mutual information among nearby words remains as high as in the 

intact sentences (which presumably allows for the formation of local semantic and syntactic 

dependencies) (Mollica, Siegelman et al., 2020). This result aligns with findings by Gauthier & 

Levy (2019), who showed that fine-tuning the pre-trained BERT language model (Devlin et al., 

2018) on a word prediction task that selects against word-order-based representations of the input 

(namely, fine-tuning on a corpus where words were randomly shuffled within a sentence) leads to 

an increase in brain decoding performance for the same fMRI benchmark used here (Pereira et al., 

2018). Lastly, recent work in natural language processing (NLP) has shown that word-order 

information is not necessarily needed to solve many current NLP benchmark tasks (e.g., Pham et 

al., 2021; Sinha et al., 2021; Papadimitriou et al., 2022; cf. Abdou et al., 2022; Lasri et al., 2022), 

although these results may be more reflective of how the benchmarks were constructed rather than 

something about human language or language-processing mechanisms (e.g., McCoy et al., 2019). 

 

Therefore, given this evidence from NLP and language neuroscience, we hypothesized that ANN-

to-brain mapping performance on current fMRI datasets may similarly not require ANNs to 

leverage word-order information. Building on Mollica, Siegelman et al. (2020), we evaluate both 
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local scrambling of words (which may better preserve syntactic and semantic dependencies among 

nearby words) and more global re-arrangement of words (which does not preserve such 

dependencies). 

 

ii)  Information-loss manipulations 

The second class of manipulations targets the information carried by words from specific parts 

of speech. Research in formal semantics has traditionally posited a categorical difference between 

the semantics of content (open-class/lexical) words and function (closed-class/logical) words, 

whereby function words, unlike content words, are assumed to carry little lexical meaning and 

primarily encode logical relationships between content words (e.g., Partee, 1992; Chierchia, 2013). 

Further, research in distributional semantics suggests that the semantic properties of function 

words are not well-represented by word co-occurrence distributions, in sharp contrast with the 

meanings of content words, which are better captured by distributional patterns (Boleda, 2020; 

though see e.g., Baroni et al., 2012; Linzen et al., 2016; Abrusán et al., 2018). 

 

Indeed, previous co-occurrence-based models often benefited from the removal of function words 

and other high-frequency “stop words” for solving various NLP tasks (e.g., Bernardi et al., 2013; 

Herbelot & Baroni, 2017; Lazaridou et al., 2017). Even for state-of-the-art ANN language models, 

it has recently been shown that retaining only the content words in linguistic context has little 

effect on next-word prediction performance, with performance varying as a function of how much 

of the lexical content is included (i.e., higher performance when keeping all content words vs. 

keeping only subsets, such as keeping only the nouns and verbs, or keeping only the nouns) 

(O’Connor & Andreas, 2021). Whereas function words have been shown to have a sizable effect 
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on ANN next-word prediction performance within local sentence contexts (because they help 

ensure grammaticality) (Khandelwal et al., 2018), content words strongly influence prediction 

performance both within local and more extended contexts (Khandelwal et al., 2018; O’Connor & 

Andreas, 2021). 

 

Research from psycholinguistics similarly shows an asymmetry between content and function 

words: when reading sentences, people tend to overlook the omission or repetition of function 

words, but such errors are much more noticeable for content words (Staub et al., 2019; Huang & 

Staub, 2021). Differences can also be found in language production: function words tend to have 

shorter pronunciations than content words of the same length, because they are typically highly 

predictable from context, which leads to phonological reduction and de-stressing (e.g., Bell et al., 

2009). 

 

In line with this previous research, we hypothesized that removing content words, but not function 

words, should have a strong negative effect on ANN-to-brain mapping, and that brain predictivity 

should increase the more lexical content of the original sentence is available to the ANN for 

building a representation. Following O’Connor & Andreas (2021), we evaluate the effect of 

preserving all or some of the content words (like nouns and verbs) or function words. 

 

iii)  Semantic-distance manipulations 

The third class of manipulations targets sentence-level meanings and serves to test how precisely 

the meaning of a sentence has to be encoded for a successful ANN-to-brain mapping.  
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Previous research in computational neuroscience has shown that vectors that represent lexical 

semantics based on word co-occurrence statistics (GloVe; Pennington et al., 2014) can be decoded 

from fMRI data recorded while participants read sentences (Pereira et al., 2018). In particular, 

Pereira et al. (2018) demonstrated that sentence pairwise classification accuracy depended on how 

semantically similar the sentence pairs were: sentences from different topics (e.g., a sentence about 

beekeeping vs. a sentence about skiing) were easier to distinguish than sentences that talk about 

different ideas within the same general topic (e.g., two sentences about beekeeping that come from 

distinct passages: e.g., one passage about the importance of beekeeping for the health of the planet 

and the other telling a story about a particular beekeeper), with sentences that talk about related 

ideas within the same topic (e.g., two sentences from the same passage on the importance of 

beekeeping) being the most challenging to distinguish. 

 

However, in Pereira et al. (2018), even neural responses to sentences from the same passage could 

still be reliably discriminated, suggesting that semantic representations of linguistic input are 

relatively fine-grained in both fMRI data and word embeddings. On the other hand, even neural 

responses to sentences from distinct topics could not be perfectly discriminated (classification 

accuracy: 81-84%, chance level: 50%), suggesting that representations of sentences that are 

unrelated to the target sentence may share some features with the representation of the target 

sentence that can lead to misclassification (at least when using coarse representations based on 

averaged decontextualized GloVe embeddings for decoding). This pattern of results raises the 

question of how much of the fMRI signal that ANN-to-brain models are able to predict represents 

a sentence’s exact or approximate semantic content. 
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We manipulate sentence meaning by replacing the original sentence with sentences that vary in 

how similar they are in meaning to the original. In line with Pereira et al. (2018), we hypothesized 

that substituting sentences that are semantically more distant from the target sentence would elicit 

lower ANN-to-brain mapping performance. Further, because ANN representations of 

compositional sentence meaning (as investigated here) are richer and finer-grained than a simple 

average of decontextualized word embeddings, we hypothesized that the representations of 

topically unrelated sentences would be more distant, so that substituting them would result in very 

low brain predictivity. We leveraged the hierarchical structure of the linguistic materials in the 

Pereira et al. (2018) fMRI benchmark to vary semantic distance between the original sentences 

and the manipulated ones, in a similar way to the original study, and additionally created 

paraphrases for each sentence, which were expected to elicit high ANN-to-brain performance. 

 

 

Manipulation type Condition name Sample stimulus

original Original it is in every beekeeper's interest to conserve local plants that produce pollen.

word-order 1LocalWordSwap it is in every beekeeper's interest to conserve local plants produce that pollen.

 3LocalWordSwaps in it is every beekeeper's interest to conserve local plants produce that pollen.

 5LocalWordSwaps in it is every interest beekeeper's to conserve local plants produce pollen that.

 7LocalWordSwaps in every it is interest beekeeper's to conserve plants local that pollen produce.

 ReverseOrder pollen produce that plants local conserve to interest beekeeper's every in is it.

 LowPMI it beekeeper's conserve plants pollen in to every that is interest local produce.

 LowPMIRand in that pollen to is plants every beekeeper's conserve produce interest it local.

information-loss KeepContentW it is beekeeper's interest conserve local plants produce pollen.

KeepNVAdj it is beekeeper's interest conserve local plants produce pollen.

 KeepNV it is beekeeper's interest conserve plants produce pollen.

 KeepN it beekeeper's interest plants pollen.

 KeepFunctionW in every to that.

semantic-distance Paraphrase conserving regional vegetation that provides pollen is of the utmost importance for beekeepers.

RandSentFromPassage beekeepers also discourage the use of pesticides on crops because they could kill the honeybees.

 RandSentFromTopic artisanal honey-making emphasizes quality and character over quantity and consistency.

 RandSent mosquitos are thin small flying insects that emit a high-pitched sound.

control RandWordList of shears metallic is in individual machine for fracture a singer can have.
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Table 1. Overview of perturbation manipulation conditions and sample stimuli for each condition. The 

perturbation manipulation conditions that we use in the current work are motivated by prior theorizing in language 

research and/or past empirical findings from both neuroscience and natural language processing (NLP). The 

perturbation manipulations include i) word-order manipulations of varying severity that preserve or destroy local 

dependency structure (following Mollica, Siegelman et al., 2020) allowing us to investigate the effect of word order 

degradation while controlling for local word co-occurrence statistics; ii) information-loss manipulations with deletion 

of words of different parts of speech (following O’Connor & Andreas, 2021) allowing us to investigate loss of 

information from particular classes of words; iii) semantic-distance manipulations with sentence substitutions that 

relate to the meaning of the original sentence to varying degrees (inspired by Pereira et al., 2018) allowing us to 

investigate loss of semantic and more general topical information while retaining sentence well-formedness. Lastly, 

as a baseline length-matched control condition, we include a random word list, where each word is substituted with a 

different random word. 

 

 

Understanding the effects of linguistic manipulations on brain predictivity 

 

To complement our findings across the linguistic perturbation manipulations, we present a set of 

exploratory analyses that aim to uncover potential causes for the differential effects of perturbation 

manipulations on brain predictivity. In particular, we look for possible correlates of brain 

predictivity across perturbation manipulation conditions in a) the ANN’s representational space 

and b) the ANN’s performance on the next-word prediction task for the manipulated sentence 

sets. 

 

The investigation of the ANN representational space is motivated by the use of representational 

similarity metrics to compare high-dimensional vectors derived from brain recordings, ANNs, or 
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both (Kriegeskorte et al., 2008; Kriegeskorte, 2015). Representational Similarity Analysis (RSA) 

relies on the strength of correlation between sets of vectors to make inferences about the 

information contained in the distributed patterns within the vectors. Although originally developed 

to compare vectors derived from different brain recording modalities, RSA-style approaches can 

also be used to compare representations derived from various instantiations of ANNs (e.g., Morcos 

et al., 2018; Barrett et al., 2019; Kornblith et al., 2019). Here, we investigated how the ANN 

representational space is transformed by different perturbation manipulations. We hypothesized 

that larger transformations in the ANN representational space (relative to the representational 

space for the original, intact stimuli) would be associated with larger changes in brain predictivity. 

 

The investigation of ANN task performance is motivated by research in psycholinguistics and 

neuroscience suggesting that predictive processing is a core mechanism for language 

comprehension (within psycholinguistics: Rayner et al., 2006; Demberg & Keller, 2008; Bicknell 

et al., 2010; Smith & Levy, 2013; Brothers & Kuperberg, 2021; within neuroscience: Henderson 

et al., 2016; Willems et al., 2016; Lopopolo et al., 2017; Heilbron et al., 2019; Shain, Blank et al., 

2020). Converging research from computational neuroscience has reported a positive correlation 

between the next-word prediction performance of ANN language models and model-to-brain 

correspondence (Schrimpf et al., 2021; Caucheteux & King, 2022; Goldstein et al., 2022; Hosseini 

et al., 2022; cf. Antonello & Huth, 2022). In line with this evidence, we hypothesized that ANN 

brain predictivity would correlate with how well the model can predict upcoming words within a 

manipulated sentence, such that manipulations that render sentences less predictable would, on 

average, lead to representations that map less well onto human brain data. 
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Manipulations of computational experimental design 

 

ANN-based modeling of language provides a novel toolkit for testing theoretically-motivated 

hypotheses about language processing in the mind and brain. However, results derived via such 

in-silico investigations of human language processing may not be robust to variations in how the 

ANN-to-brain match comparisons are performed. Here, we evaluate the relative importance of 

manipulations to what we denote as the ‘computational experimental design’ for ANN-to-brain 

match performance to evaluate the robustness of our results. Specifically, we investigate the 

contribution of two factors, as elaborated below: i) whether the training data stimuli for the ANN-

to-brain mapping model are intact or perturbed, and ii) whether the target sentence is 

contextualized with preceding sentences from the passage. 

  

i)  ANN-to-brain mapping model training stimuli 

In our main approach (TrainIntact-TestPerturbed, as illustrated in Figure 1B, upper two panels), 

we train a linear ANN-to-brain mapping model using ANN representations for the original (intact) 

stimuli from Pereira et al. (2018) and human brain responses obtained during the processing of the 

same, intact versions of the stimuli. This training set-up corresponds to the main use case of ANN-

to-brain encoding models and follows prior work (e.g., Schrimpf et al., 2021; Caucheteux & King, 

2022; Goldstein et al., 2022). Using this standard set-up, we investigated our main research 

question, i.e., which aspects of a linguistic stimulus contribute to successful ANN-to-brain 

mapping performance, by evaluating the mapping model’s ability to predict brain responses to 

intact sentences from ANN representations of sentences that were perturbed in one of the ways 

described above (detailed description in Methods; Perturbation manipulation conditions). If 
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degrading a particular aspect of the sentence decreases the mapping model’s performance (brain 

predictivity), we would like to conclude that this aspect of the stimulus is a critical contributor to 

the mapping model’s performance. If, on the other hand, degrading the stimulus does not lead to 

lower brain predictivity, we would like to conclude that the mapping model does not pay any 

appreciable attention to the part of the ANN representation of the stimulus that is sensitive to the 

removed information. 

 

However, there are (at least) two possible explanations for why sentence perturbation 

manipulations may adversely affect the success of an ANN-to-brain mapping model trained on 

representations of intact sentences: either a successful mapping must critically rely on the 

information removed by a given perturbation (our desired interpretation, as stated above), or 

perturbing the input to the ANN model only at test time introduces out-of-distribution inputs to 

the trained ANN-to-brain mapping model, i.e., lower brain predictivity can be explained by a 

distribution shift of the input to the mapping model at test time. To distinguish between these 

possibilities, we tested how well an ANN-to-brain mapping model can predict brain responses 

when the input to the ANN is perturbed in the same way during training and testing (Figure 1B, 

TrainPerturbed-TestPerturbed). When the ANN-to-brain mapping models are trained and tested 

on the same set of perturbations, a decline in brain predictivity relative to the performance using 

intact sentences (Original benchmark) cannot be explained by a distribution shift in the input to 

the model at test time. Thus, this approach can reveal the degree to which perturbations remove 

information from the ANN representation of the stimuli that is useful for a mapping model when 

it learns a relationship between ANN representations and brain data. 
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ii)  Contextualization of the linguistic stimuli 

ANN-to-brain predictivity analyses typically aim to mimic the experimental procedure for which 

the human brain data was obtained. Linguistic stimuli in human brain imaging studies are often 

contextualized within a story (e.g., Blank et al., 2014; Huth et al., 2016; Schoffelen et al., 2019) 

or a passage (e.g., Pereira et al., 2018). Given that large-scale ANN language models (such as 

Transformer language models) are able to condition input representations on large amounts of 

preceding linguistic context, they enable mimicking the human experimental design by providing 

the same linguistic stimuli as context to the ANN as were provided to the human participants. 

However, whether this is the right approach, empirically and conceptually, is not clear. 

 

On the one hand, providing the same context to the ANN language models for representation 

building as what humans saw/heard during the experiment could improve ANN-to-brain mapping 

performance by modulating sentence representations in ways similar to how the human brain is 

affected by context. On the other hand, sentence contextualization could hurt match-to-brain 

performance. First, the way in which ANNs vs. humans represent contextual information in 

memory is likely very different. In particular, constrained by memory limitations, humans do not 

retain detailed linguistic representations of the preceding context (e.g., Potter et al., 1980; Potter 

& Lombardi, 1990; Potter, 2012; Futrell et al., 2020); instead, as they process linguistic input, they 

appear to extract the representations of the relevant meaning and ‘discard’ the exact word 

sequences (e.g., Christiansen & Chater, 2016; Potter & Lombardi, 1998). And second, human 

neuroscience studies have suggested that extended story contexts are represented not in the 

language network proper (which we focus on here), but in a distinct brain network—the Default 

network (e.g., Lerner et al., 2011; Simony et al., 2016; I. A. Blank & Fedorenko, 2020). Thus, 
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neural responses to language stimuli of the language-selective areas may only be capturing the 

local processing of the current sentence and would therefore align better with decontextualized 

sentence representations (see Jain & Huth, 2018; Caucheteux et al., 2021 for evidence that ANN 

representations with varying amounts of linguistic context lead to differential mapping 

performance with different brain areas). We therefore evaluated brain predictivity for sentence 

representations with and without contextualization through inclusion of preceding sentences in the 

passage; we refer to these as contextualized and decontextualized sentence representations 

respectively. We did this for the two ANN-to-brain mapping model training approaches introduced 

above (i.e., TrainIntact-TestPerturbed and TrainPerturbed-TestPerturbed). 

 

To foreshadow our results, we find that i) lexical-semantic content of the sentence, rather than 

syntactic structure (conveyed via word order or function words), is responsible for the ability of 

ANNs to predict fMRI responses in the human language network. We further show that ii) 

linguistic perturbations that decrease brain predictivity have interpretable causes: they lead to a) 

more divergent representations in the ANN’s embedding space (relative to the representations of 

intact sentences) and b) a decrease in the ANN’s next-word prediction task performance, i.e., its 

ability to predict upcoming tokens in those stimuli. Finally, iii) the results from the linguistic 

manipulations are largely robust to variations in the computational experimental design, which 

impact the overall magnitude of brain scores but not their pattern across conditions. 
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2. Materials and Methods 

Here we describe in detail (i) our manipulations of the linguistic stimuli that are designed to isolate 

the influences of different features of the input, (ii) how we obtain ANN representations for these 

stimuli, and (iii) how we perform ANN-to-brain mappings. Because our approach is based on the 

ANN-to-brain mapping framework from Schrimpf et al. (2021), the sections Methods; Comparison 

of ANN model representations to brain measurements, fMRI dataset (Pereira2018), and 

Estimation of ceiling are similar to the methods reported in Schrimpf et al. (2021). 

 

fMRI dataset. We used the data from Pereira et al.'s (2018) Experiments 2 (n=9) and 3 (n=6) (10 

unique participants, all native speakers of English). (The set of participants is not identical to 

Pereira et al., 2018: i) one participant (tested at Princeton) was excluded from both experiments 

here to keep the fMRI scanner the same across participants; and ii) two participants who were 

excluded from Experiment 2 in Pereira et al. (2018) based on the decoding results in Experiment 

1 of that study were included here, to err on the conservative side.) Stimuli for Experiment 2 

consisted of 384 sentences (96 text passages, four sentences each), and stimuli for Experiment 3 

consisted of 243 sentences (72 text passages, three or four sentences each). The two sets of 

materials were constructed independently, and each spanned a broad range of content areas. 

Sentences were 7-18 words long in Experiment 2, and 5-20 words long in Experiment 3. The 

sentences were presented on the screen one at a time for 4s each (followed by 4s of fixation, with 

additional 4s of fixation at the end of each passage), and each participant read each sentence three 

times, across independent scanning sessions (see Pereira et al., 2018 for details of experimental 

procedure and data acquisition). 
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Preprocessing and response estimation: Data preprocessing was carried out with SPM5 (using 

default parameters, unless specified otherwise) and supporting, custom MATLAB scripts. 

Preprocessing included motion correction (realignment to the mean image of the first functional 

run using 2nd-degree b-spline interpolation), normalization (estimated for the mean image using 

trilinear interpolation), resampling into 2 mm isotropic voxels, smoothing with a 4mm FWHM 

Gaussian filter and high-pass filtering at 200s. A standard mass univariate analysis was performed 

in SPM5 whereby a general linear model (GLM) estimated the response to each sentence in each 

run. These effects were modeled with a boxcar function convolved with the canonical 

Hemodynamic Response Function (HRF). The model also included first-order temporal 

derivatives of these effects (which were not used in the analyses), as well as nuisance regressors 

representing entire experimental runs and offline-estimated motion parameters. 

Functional localization: Data analyses were performed on fMRI BOLD signals extracted from the 

bilateral fronto-temporal language network. This network was defined functionally in each 

participant using a well-validated language localizer task (Fedorenko et al., 2010), where 

participants read sentences vs. lists of nonwords. This contrast targets brain areas that support 

‘high-level’ linguistic processing, past the perceptual (auditory/visual) analysis. Brain regions that 

this localizer identifies are robust to modality of presentation (Fedorenko et al., 2010; Scott et al., 

2017; Malik-Moraleda, Ayyash et al., 2022), as well as materials and task (e.g., Diachek, Blank, 

Siegelman et al., 2020). Further, these regions have been shown to exhibit strong sensitivity to 

both lexico-semantic processing (understanding individual word meanings) and combinatorial, 

syntactic/semantic processing (putting words together into phrases and sentences) (Bautista & 

Wilson, 2016; I. Blank et al., 2016; I. A. Blank & Fedorenko, 2020; Fedorenko et al., 2010, 2012, 

2016, 2020). Following prior work, we used group-constrained, participant-specific functional 
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localization (Fedorenko et al., 2010). Namely, individual activation maps for the target contrast 

(here, sentences>nonwords) were combined with “constraints” in the form of spatial ‘masks’—

corresponding to broad areas within which most participants in a large, independent sample show 

activation for the same contrast. The masks, which are derived in a data-driven way from this 

independent sample of participants and are available from https://evlab.mit.edu/funcloc/, have 

been used in many prior (e.g., Diachek, Blank, Siegelman et al., 2020; Jouravlev et al., 2019; 

Shain, Blank et al., 2020). They include six regions in each hemisphere: three in the frontal cortex 

(two in the inferior frontal gyrus, including its orbital portion: IFGorb, IFG; and one in the middle 

frontal gyrus: MFG), two in the anterior and posterior temporal cortex (AntTemp and PostTemp), 

and one in the angular gyrus (AngG). Within each mask, we selected 10% of most localizer-

responsive voxels (voxels with the highest t-value for the localizer contrast) following the standard 

approach in prior work. This approach allows to pool data from the same functional regions across 

participants even when these regions do not align well spatially in the common space. 

We constructed a stimulus-response matrix for each of the two experiments by i) averaging the 

BOLD responses to each sentence in each experiment across the three repetitions, resulting in 1 

data point per sentence per language-responsive voxel of each participant, selected as described 

above (13,553 voxels total across the unique 10 participants; 1,355 average, ±6 std. dev.), and ii) 

concatenating all sentences (384 in Experiment 2 and 243 in Experiment 3), yielding a 384x12,195 

matrix for the 9 unique participants in Experiment 2, and a 243x8,121 matrix for the 6 unique 

participants in Experiment 3. 

 

ANN models. As our computational models, we chose to investigate the GPT2 Transformer model 

family (Radford et al., 2019). These models are trained to predict the next token in a large dataset 
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emphasizing document quality (WebText). We focus on this model family for two reasons: i) as a 

unidirectional-attention model, GPT2 arguably processes input in a more human-like manner than 

bidirectional-attention models such as BERT (Devlin et al., 2018), which have access to the yet 

unseen input in the future context, and ii) previous work has shown that GPT2 in particular seems 

to accurately capture human brain activity in the language system during the processing of the 

same linguistic stimuli (e.g., Schrimpf et al., 2021; Caucheteux & King, 2022; Goldstein et al., 

2022). We report results for GPT2-xl, the top-performing ANN language model in previous work 

(Schrimpf et al., 2021) and validate that the findings hold across the GPT2 model family (Figure 

SI 1A) to ensure the robustness of our results to idiosyncratic model features. Hence, our primary 

ANN language model of interest was GPT2-xl (number of layers L=48, hidden size H=1600). 

Additionally, we tested GPT2 (L=12, H=768) and Distil-GPT2, a distilled version (Sanh et al., 

2019; L=6 H=768). For all three GPT2 models, we used the pretrained models available via the 

HuggingFace library (Wolf et al., 2020). 

 

Retrieving ANN model representations. To retrieve ANN model representations, we treated 

each ANN model (see Methods; ANN models) as an experimental participant and ran similar 

experiments on them as the one that was run on humans. We retrieved ANN representations for 

each sentence for each ANN layer (i.e., at the end of each Transformer block). Given that human 

participants were exposed to the full sentence at once, we similarly computed a sequence summary 

representation for each sentence. Our primary approach for obtaining a sequence summary 

representation was using the last-token representation: we obtained the representation of the last 

sentence token (which was always the representation of the final period token “.”) as a sequence 

summary, given that unidirectional models already aggregate representations of the preceding 
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context (i.e., earlier tokens in the sentence) (see Figure SI 1B for generalization to average-token 

representations of sentences).  

To retrieve ANN model representations, we fed sentences to the model sequentially (i.e., sentence 

by sentence). For the contextualized representations (see Methods; Manipulations of 

computational experimental design), we grouped sentences by passage to mimic the experimental 

procedure for human participants and fed the passage context (if any) before but not after each 

sentence to the ANN model. For the decontextualized representations, we did not feed any passage 

context to the model. 

 

Comparison of ANN model representations to brain measurements. Because we were 

interested in which aspects of the stimulus contribute to high brain predictivity, we compared 

ANN model representations of systematically manipulated stimuli (see Methods; Perturbation 

manipulation conditions below) with brain recordings of humans processing the original (intact) 

version of the sentences (see Methods; fMRI dataset above). 

We treated the ANN language model representation at each layer separately and tested how well 

it could predict human brain recordings (we treated the two experiments in the Pereira et al., 2018 

dataset separately but averaged the results across experiments for all plots). Following Schrimpf 

et al. (2021), we divided the stimuli (i.e., sentences) into an 80%–20% training–held-out split. For 

each (participant-specific) voxel, we fitted a linear regression model (ordinary least squares) from 

the ANN’s representations of the training stimuli to that voxel’s corresponding brain recordings 

for those stimuli. We applied the regression on model representations of the held-out 20% of 

stimuli to generate predicted brain responses for those stimuli, and then compared predicted versus 

actual brain responses for that voxel using the Pearson correlation coefficient. This process was 
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repeated five times, holding out a different 20% of stimuli each time. For each voxel, we then took 

the mean of the resulting five scores to give us that voxel’s mean predictivity score, computed 

each participant’s median predictivity score across that participant’s voxels, and computed the 

median and median absolute deviation (m.a.d.) within-participant error within each perturbation 

condition manipulation category. We report the results for the best-performing layer of the ANN 

as well as results across layers, for completeness (Figure SI 2). 

Estimation of noise ceiling (quantified as brain-to-brain predictivity). Due to intrinsic noise in 

biological measurements, we estimated how well the best possible “average human” model could 

perform on predicting brain responses in single voxels for held-out “target” participants. In our 

brain-to-brain predictivity estimation, we included the n=5 participants that completed both 

experiments in the Pereira et al. (2018) dataset to obtain full overlap in the materials across 

participants. Following Schrimpf et al. (2021), the ceiling value was estimated using a three-step 

procedure (see SI Methods for additional details): We (i) iteratively subsampled the data to predict 

voxel responses in a given “target” participant from the voxel responses of the remaining 

“predictor” participants, (ii) extrapolated the procedure to a participant pool of infinitely many 

participants, and (iii) obtained a final ceiling value by aggregating the estimated voxel-wise 

predictivity ceilings. Via this procedure, we obtained a ceiling value of 0.32 for the Pereira et al. 

(2018) dataset. 

 

Perturbation manipulation conditions. For our baseline Original condition, we stripped the 

sentence stimuli (from Experiments 2 and 3 in Pereira et al., 2018) of all sentence-internal 

punctuation, except for hyphens and apostrophes, and lower-cased all words. This was done to 
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ensure that conditions are as comparable as possible across manipulation conditions (for instance, 

it is unclear where sentence-internal punctuation should go when sentence word order is 

perturbed). For a baseline control condition, we created length-controlled random word lists, 

RandWordList, by gathering all words across the dataset into a list and replacing every word in 

every sentence by a random draw (without replacement). For the critical conditions, we applied a 

range of controlled manipulations to the stimuli used in the original fMRI experiments reported in 

Pereira et al. (2018). These manipulations can be grouped into three categories: i) word-order 

manipulations, designed to understand how degrading word order in various ways affects 

processing, ii) information-loss manipulations, designed to understand how loss of words from a 

particular part of speech category affects processing, and iii) semantic-distance manipulations, 

designed to understand how replacing sentences with sentences that are closer vs. further 

semantically affects processing. Manipulations were applied once to the full dataset. This 

perturbed dataset was then fed into the ANN language models sentence-by-sentence and 

contextualized or decontextualized sentence representations were obtained. (As described in 

Methods; Retrieving ANN model representations, contextualized representations of perturbed 

sentences were obtained using the sentence’s passage context which was perturbed in the same 

way as the sentence of interest.) 

i)  Word-order manipulations 

For the word-order manipulations, we investigated ANN-to-brain mapping performance across 

different sentence-internal word scrambling conditions. For five of the word-order manipulation 

conditions, we followed the material creation procedure described in (Mollica, Siegelman et al., 

2020). Specifically, in four of these conditions, word order was scrambled to different degrees by 

iteratively and randomly choosing 1, 3, 5 or 7 words from the Original sentence stimuli and 
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swapping them with one of their immediate word neighbors, leading to the creation of the 

1LocalWordSwap, 3LocalWordSwaps, 5LocalWordSwaps, 7LocalWordSwaps conditions. To 

ensure that the desired number of local swaps has in fact been achieved (i.e., within the chosen 

number of swaps, no swap was undone by another), the pairwise edit distance between the original 

sentence and the scrambled condition was calculated. As reported in Mollica, Siegelman et al. 

(2020), these local swap manipulations, even for the 7-swap case (7LocalWordSwaps), typically 

preserve local semantic dependency structure, as can be measured by pointwise mutual 

information (PMI) among nearby words (as detailed below). The fifth (and last) condition which 

also followed the creation procedure described in Mollica, Siegelman et al. (2020) was a condition 

where the PMI among nearby words is minimized (the LowPMI condition). Here, we assigned the 

content and function words of every sentence to two lists (creating 4 lists overall: even- and odd-

numbered content words, and even- and odd-numbered function words, according to their position 

in the sentence). These lists were then re-concatenated into a string such that all function words 

intervened between the content words in the two lists, creating maximal linear distance between 

combinable content words (i.e., words that were adjacent/proximal in the original sentence). 

We also created two additional word-order manipulation conditions that were not investigated in 

Mollica, Siegelman et al. (2020). The first used a different strategy for minimizing local 

combinability than the one used in the LowPMI condition: the LowPMIRandom condition. Here, 

stimuli were created by generating 10 random permutations of the words within each sentence 

(which we ensured did not include the versions used in the 1LocalWordSwap-7 conditions) and 

choosing the perturbation with the lowest PMI score (computed as detailed next). Given that the 

LowPMI condition was the only condition from the original paper that was generated in a 

deterministic way, the LowPMIRandom condition was included to ensure that the models could 
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not exploit the latent generation procedure. The second was a ReverseOrder condition, in which 

the order of the words in the sentence was reversed. This condition ensures maximal linear distance 

between words in the original and the manipulated string, while preserving the PMI profile of the 

original stimulus. 

A string’s PMI score was calculated using the procedure described in Mollica, Siegelman et al. 

(2020): For each string, we used a sliding four-word window to extract local word pairs (this is 

equivalent to collecting the bigrams, 1-skip-grams, and 2-skip-grams from each string). For each 

word pair, we then calculated its positive PMI score.1 Probabilities were estimated using the 

Google N-gram corpus (Michel et al., 2011) and ZS Python library (Smith, 2014) with Laplace 

smoothing (α = 0.1). The string’s PMI score was finally calculated by averaging across the positive 

PMI values for all word pairs occurring within a four-word sliding window (see Equation 1). The 

PMI scores for all conditions can be found in Figure SI 3. 

(1) 𝑃𝑀𝐼(𝑤! 	…	𝑤") = 	
#

$("&')
	∑ 	"	–	#

!	+	# ∑ 	,-.(!/$,")
1	+	!/# max .0, log 234!,4"5

2(4!)234"5
4 

 

ii)  Information-loss manipulations 

For the information-loss manipulations, we investigated ANN-to-brain mapping performance 

across five versions of each sentence, for which different subsets of words were retained relative 

to the original sentence. For the different manipulations, we respectively retained only words 

whose part of speech tag, as determined by the NLTK part-of-speech tagger (Bird et al., 2009), is 

 
1 We used positive pointwise mutual information because negative PMI values are in practice extremely noisy 

due to data sparsity (Jurafsky & Martin, 2008). 
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in a given set, while preserving the original order of the retained words. Specifically, we examined 

versions made up of (i) all the content words, i.e., nouns, verbs, adjectives, and adverbs 

(KeepContentW), (ii) nouns, verbs, and adjectives (KeepNVA), (iii) nouns and verbs (KeepNV), 

(iv) nouns (KeepN), and (v) only the function words (KeepFunctionW). Following O’Connor & 

Andreas (2021) we included pronouns and proper names in the set of nouns. Note also that because 

not all the sentences had adverbs and/or adjectives, some pairs of the conditions (i), (ii), (iii), and 

(iv) could be identical for some sentences. 

 

iii)  Semantic-distance manipulations 

For the semantic-distance manipulations, we investigated ANN-to-brain mapping performance 

across four conditions, for which the original sentence was replaced by a sentence of variable 

semantic distances. For three of these conditions, we leveraged the hierarchical organization of the 

materials in Pereira et al. (2018) (Figure SI 4). For the fourth condition, we generated sentence 

paraphrases. We first describe the three conditions that leverage the hierarchical structure of the 

Pereira et al. (2018) dataset. As described in Methods; fMRI dataset, stimuli for Experiment 2 

consisted of 384 sentences grouped into 96 passages with four sentences each, and stimuli for 

Experiment 3 consisted of 243 sentences grouped into 72 passages with three or four sentences 

each. Further, the passages in both experiments came from a smaller number of ‘topics’ that 

spanned a broad and diverse range of content areas, e.g. clothes or animals. The 96 passages in 

Experiment 2 were grouped into 24 topics (with 4 passages per topic; e.g., for the topic of clothes, 

there was a passage about a dress and a passage about a glove), and the 72 passages in Experiment 

3 were also grouped into 24 topics (with 3 passages per topic, e.g., beekeeping was a topic, with 3 

different passages), non-overlapping with the topics in Experiment 2 (for example passages from 
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each experiment, see Table SI 1). We created three experimental conditions. In two of them, 

RandSentFromPassage and RandSentFromTopic, each sentence was replaced by a sentence from 

the same passage or topic, respectively. And in the third, RandSent, condition, each sentence was 

replaced by a sentence that was randomly drawn from the entire dataset, with the constraint that 

no sentence ended up in its original position (proportion of sentences in RandSent condition that 

come from a different topic than the original sentence: 97.1%; proportion of sentences in RandSent 

condition that come from a different passage than the original sentence: 99.2%). 

 

As described in Methods; Comparison of ANN model representations to brain measurements, the 

cross-validation scheme used in this paper was a 5-fold cross-validation, holding out 20% of 

stimuli in each fold. In the TrainIntact-TestPerturbed experimental design, the mapping model 

was trained on ANN representations of stimuli from the Original benchmark. When benchmarks 

by design shuffled stimuli relative to the fMRI data (all semantic-distance benchmarks except 

Paraphrase), this procedure could lead to non-independence in train and test splits. To prevent 

such overlap between the training and test stimuli in the TrainIntact-TestPerturbed versions of 

these benchmarks, we proceeded as follows: For each of the five cross-validation splits, we i) 

retrieved the representations of the stimuli that belonged to the test set for the same split in the 

Original benchmark. We then either a) randomly shuffled the order of these activations relative to 

the fMRI data and ensured that no sentence representation remained in its original position 

(RandSent) or we b) iterated over the passages/topics and, whenever possible (i.e., whenever the 

test set contained more than one sentence from the given passage/topic), randomly shuffled the 

sentence representations within the passages/sentences, ensuring that no sentence representation 

remained in its original position (RandSentFromPassage/RandSentFromTopic). Given this 
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constraint, and because the average number of sentences per passage (4 sentences/passage in 

Experiment 2, and 3.38 sentences/passage in Experiment 3) was lower than the number of cross-

validation splits (n=5), the average percentage of sentences whose representations were not 

shuffled relative to the associated fMRI data using the default 5-fold cross-validation scheme was 

53.72% for RandSentFromPassage and 8.97% for RandSentFromTopic. Although this procedure 

led to a high proportion of non-shuffled sentence representations relative to the associated fMRI 

data in the test set, we opted for this method to ensure consistency and comparability across all 

TrainIntact-TestPerturbed benchmarks, which were thus all trained on the exact same intact 

sentence representations. To alleviate concerns about the mapping performance being driven 

mainly by matched fMRI representations, we additionally ran the RandSent, 

RandSentFromPassage and RandSentFromTopic TrainIntact-TestPerturbed benchmark versions, 

as well as the Original and RandWordList benchmarks for comparison, using only 2 cross-

validation splits instead of the default number of 5 folds. Using this procedure, all but 17.17% of 

sentence representations could be shuffled relative to its associated fMRI data for 

RandSentFromPassage and all sentences could be successfully shuffled with the associated fMRI 

data for RandSentFromTopic, and the key result pattern was not affected (Figure SI 5). 

 

For the fourth and last condition, we generated a paraphrase for each sentence in the set. To do so, 

we used the online OpenAI ChatGPT interface to generate three paraphrases for each sentence. 

For each of these paraphrases, we automatically selected the paraphrase that was closest in number 

of words to the original sentence. These approximately length-matched paraphrases were then 

manually edited if (i) the absolute difference in number of words between the paraphrased sentence 

and the original sentence was more than three words, (ii) the paraphrased sentence did not capture 
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the semantic content of the original sentence (as judged by the authors), or (iii) the paraphrased 

sentence contained different pronouns compared to the original sentence due to ChatGPT history. 

Out of 627 paraphrase sentences, 111 sentences (17.7%) were manually edited to yield the final 

set of paraphrased stimuli. Identical to the remaining benchmarks, we stripped the sentence stimuli 

of all sentence-internal punctuation, except for hyphens and apostrophes, and lower-cased all 

words. On average, the paraphrased sentences were -0.44 words shorter than the original sentences 

(median: 0). The paraphrased sentences overlapped partly with the original sentences in terms of 

their lexical content: the average fraction of overlapping words between the paraphrased and 

original sentences was 0.46 (median: 0.46, min: 0.05, max: 1). 

 

 

Manipulations of computational experimental design. The computational experimental design 

conditions aim to investigate factors related to how the comparisons between ANN representations 

and brain data are performed. Specifically, we investigated two factors: 

 

i)  ANN-to-brain mapping model training stimuli 

This condition investigated the effect of the training data for the ANN-to-brain mapping model. In 

the TrainIntact-TestPerturbed condition we trained the mapping model on intact (i.e., original, 

same as the humans were exposed to) stimuli, and tested the mapping model on perturbed stimuli. 

In the TrainPerturbed-TestPerturbed condition we trained the mapping model on perturbed 

stimuli, and tested the mapping model on perturbed stimuli (using the same perturbation 

manipulation type). 
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ii)  Contextualization of the linguistic stimuli 

This condition investigated the effect of preceding linguistic context on the ANN representations 

derived for each stimulus according to the structure of the materials investigated (see Methods; 

fMRI dataset). In brief, humans were presented sentences (one at a time) as part of short (3-4 

sentence-long) passages. In the contextualized condition, the ANN representations were obtained 

using the preceding sentences in the passage of interest as context (if any; i.e., the first sentence in 

a passage would have no preceding contextual information). Because the perturbations were 

applied to the full set of materials once, and ANN representations were derived based on the 

perturbed sentences, the preceding context of a sentence was perturbed in the same manner as the 

sentence of interest2. In the decontextualized condition, the ANN representations were obtained 

without any preceding context, and representations were hence obtained using individual, 

decontextualized sentence representations. 

 

These two factors were crossed in a 2x2 design to yield the four conditions: TrainIntact-

TestPerturbed_Contextualized, TrainPerturbed-TestPerturbed_Contextualized, TrainIntact-

TestPerturbed_Decontextualized, and TrainPerturbed-TestPerturbed_Decontextualized. 

 

 
2 The contextualization for the test set sentences in the TrainIntact-TestPerturbed_Contextualized semantic-

distance manipulation benchmarks where sentence representations were shuffled relative to the fMRI data 

(RandSentFromPassage, RandSentFromTopic, RandSent) is an exception to this rule. Here, we take the sentence 

representations of the original sentences and shuffle the order of these (correctly contextualized) sentence 

representations with the associated fMRI data either randomly or based on the sentence’s membership in a 

particular passage or topic. 
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Statistical tests. For statistical testing of brain predictivity scores within perturbation manipulation 

conditions (Figure 2, Figure 4, Figure SI 4, Figure SI 5, Figure SI 6; Results: Section 3.1, 

Section 3.3), we performed pairwise, two-sided, dependent-samples t-tests for all comparisons 

among the participant-wise brain predictivity values (i.e., 10 values given that the Pereira et al., 

2018 consisted of 10 unique participants) between pairs of conditions. P-values were corrected for 

multiple comparisons (within each perturbation manipulation condition) using the Bonferroni 

procedure (i.e., if a perturbation manipulation consisted of 7 conditions and, correspondingly, 7 

pairwise comparisons were performed, with each condition compared to the original condition (or 

to the baseline, random word list, condition) the correction was performed over these 7 tests; for 

completeness, all pairwise condition comparisons are reported in Table SI 2). 

 

Error bars of brain predictivity scores show median absolute deviation (m.a.d.) within participants 

using Scipy 1.8.0’s median_abs_deviation function with a scaling factor of ~0.67 

(scale=”normal”) for approximate consistency with the standard deviation for normally distributed 

data. Thus, error bars were computed by centering the data across conditions within a manipulation 

category per participant to remove within-participant differences and finally computing the m.a.d. 

over participants. The error bars hence demonstrate the ANN-to-brain mapping model’s prediction 

variance within participants across conditions rather than uncertainty around the median. 

 

For statistical testing between computational experimental design conditions (Figure 6, Results; 

Section 3.3), we concatenated the participant-wise brain predictivity values within a perturbation 

manipulation condition (i.e., if a perturbation manipulation consisted of 7 conditions, we 

concatenated 10*7 = 70 values). Two-sided dependent-samples t-tests were performed between 
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these pairs of computational experimental conditions. P-values were corrected for multiple 

comparisons (within each computational experimental design condition) using the Bonferroni 

procedure. Throughout the figures, significance levels are denoted as follows: p<.05: *; p<.01: **; 

p<.001: ***.  
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3. Results 

3.1. Lexical-semantic content, not syntactic structure, is the main 

contributor to ANN-brain similarity in the language network 

In this section, we investigate which aspects of a linguistic stimulus contribute to successful ANN-

to-brain correspondence of canonically trained ANN-to-brain mapping models. In particular, we 

trained ANN-to-brain mapping models on ANN representations of intact stimuli (with 

corresponding brain responses to intact stimuli) and tested these models using ANN 

representations of perturbed stimuli (with corresponding brain responses for intact stimuli) (the 

TrainIntact-TestPerturbed approach, as illustrated in Figure 1B). We report results for GPT2-xl, 

the top-performing ANN language model in previous work (Schrimpf et al., 2021) (see Figure SI 

1A for the generalization of the findings across the GPT2 model family, and Figure SI 1B for 

generalization to a different sequence summarization approach when extracting ANN model 

representations). In line with Schrimpf et al. (2021), we treat each GPT2-xl layer as an individual 

model (“layer model”) and report the brain predictivity score for the best-performing GPT2-xl 

layer model per perturbation condition. We note that the results derived in this way were 

comparable to selecting the best-performing GPT2-xl model layer on the Original benchmark and 

using this layer for evaluating the remaining perturbation manipulation conditions (Figure SI 5).  

We diverge from Schrimpf et al. (2021) in that the brain predictivity scores throughout the 

manuscript are raw Pearson r values, rather than r values normalized by the noise ceiling value 

quantified to be r=0.32 via extrapolated brain-to-brain predictivity for the Pereira et al. (2018) 

dataset (see Methods; Estimation of ceiling).  
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Figure 2. Perturbation manipulations that lead to the loss of lexical-semantic or topical content information 

decrease brain predictivity. Performance of ANN-to-brain mapping models on held-out sentences, trained on ANN 

representations of intact sentences and evaluated on ANN representations of perturbed sentences (Figure 1B) from the 

three perturbation manipulation conditions (panels A-C). For each condition (bar), we plot the raw brain predictivity 

Pearson r value of the best-performing layer (as in Schrimpf et al., 2021). The ceiling level for the Pereira2018 dataset 

A  Word-order manipulations  
Original: beekeeping encourages the conservation of local habitats.
1LocalWordSwap: beekeeping encourages the conservation of habitats local.
3LocalWordSwaps: beekeeping conservation encourages the of habitats local.
5LocalWordSwaps: conservation beekeeping encourages the habitats of local.
7LocalWordSwaps: beekeeping conservation of encourages habitats local the.
ReverseOrder: habitats local of conservation the encourages beekeeping.
LowPMI: beekeeping conservation habitats the of encourages local.
LowPMIRand: encourages the beekeeping of habitats conservation local.
RandWordList: three climb around the the spears vapor.

B  Information-loss manipulations  

C  Semantic-distance manipulations

Original: beekeeping encourages the conservation of local habitats.
KeepContentW: beekeeping encourages conservation local habitats.
KeepNVAdj: beekeeping encourages conservation local habitats.
KeepNV: beekeeping encourages conservation habitats.
KeepN: conservation habitats.
KeepFunctionW: the of.
RandWordList: three climb around the the spears vapor.

Original: beekeeping encourages the conservation of local habitats.
Paraphrase: beekeeping plays a role in conserving local ecosystems.
RandSentFromPassage: it is in every beekeeper's interest to conserve local
plants that produce pollen.
RandSentFromTopic: artisanal honey-making emphasizes quality and 
character over quantity and consistency.
RandSent: and for society hip fractures involve substantial expense and
time in the hospital.
RandWordList: three climb around the the spears vapor.
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is r=0.32, as estimated via brain-to-brain predictivity (see Methods; Estimation of ceiling), which for the Original 

benchmark leads to ceiling-level predictivity, in line with Schrimpf et al. (2021). Error bars show median absolute 

deviation within participants. Manipulation condition scores that were significantly different from the Original and 

RandWordList control benchmarks (dark and light gray dashed lines, respectively; these conditions are identical across 

the three panels) are marked with asterisks (p<.05: *; p<.01: **; p<.001: ***) above and below the bars, respectively, 

in each graph. Significance was established via dependent two-sided t-tests, with p-values corrected for multiple 

comparisons (within each perturbation manipulation condition and separately for the comparisons to the original vs. 

the random word-list baseline) using the Bonferroni procedure. 

 

 

First, we investigated the performance of the mapping model on a control condition: a length-

matched list of random words. For this condition, the mapping model performed at near-chance-

level (Figure 2, RandWordList condition in panels A-C). Chance level (zero predictivity) was not 

fully reached for the best-performing layer model, possibly because this layer is able to exploit 

some information about the length of the stimulus (see Figure SI 6). We then investigated the 

effect of our three types of perturbation manipulations—manipulations of word order within the 

sentence (Word-order manipulations), loss of different subsets of words from the sentence 

(Information-loss manipulations), and manipulations of the semantic distance from the original 

sentence (Semantic-distance manipulation)—on the mapping model’s ability to predict brain 

activity, relative to the original sentence (Figure 2, Original condition in panels A-C). 

 

i) Word-order manipulations (Figure 2A) 

 

Word-order manipulations significantly affected brain predictivity, but predictivity scores did not 

correlate with the severity of word-order manipulations: in particular, predictivity remained 



 
 
 

40 

relatively high even for the most severe scrambling manipulations, with drops in predictivity 

values ranging between 8 and 24% for the different manipulations. In particular, one local word 

swap (1LocalWordSwap) led to a ~8% drop in brain predictivity (0.35 Original vs. 0.32 

1LocalWordSwap: pairwise dependent t-test, t=5.52, p<.01; all reported p-values were corrected 

for multiple comparisons within each manipulation category using the Bonferroni procedure). The 

remaining local word swap conditions ({3,5,7}LocalWordSwaps) all had a comparable numerical 

effect (~17% drop) on brain predictivity (from 0.35 to 0.29, ts>5.81, ps<.001). Pairwise 

comparisons among the {1,3,5,7}LocalWordSwaps conditions showed no significant differences 

(see Table SI 3 for the pairwise statistical comparisons among all conditions). Even the most 

extreme local word-order scrambling condition, i.e., reversing the order of the words 

(ReverseOrder), yielded a decrease relative to Original that was statistically comparable to, albeit 

larger than, the conditions where 3 or more local pairs were swapped (0.35 Original vs. 0.27 

ReverseOrder, ~24% drop, t=9.29, p<.001). 

 

Critically, all these five conditions ({1,3,5,7}LocalWordSwaps, ReverseOrder) were designed to 

retain local semantic dependency structure as quantified by pointwise mutual information (PMI) 

(see Methods; Perturbation manipulation conditions; Figure SI 2). To test whether preserving 

local combinability of words is critical for brain predictivity (cf. Mollica, Siegelman et al., 2020), 

we examined two conditions where local dependency structure was destroyed: the LowPMI and 

LowPMIRandom conditions, both of which decreased local PMI. Strikingly, even for these 

conditions, the effect on brain predictivity was relatively small, similar to the local-scrambling 

conditions (0.35 Original vs. 0.30 LowPMI, ~16% drop, t=6.35 p<.001; and vs. 0.28 

LowPMIRandom, ~20% drop, t=8.47, p<.001). Hence, destroying the local dependency structure 
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does not appear to affect brain predictivity beyond how it is affected by local word swaps that keep 

local dependency structure more easily inferable. 

 

ii) Information-loss manipulations (Figure 2B) 

Preservation of different subsets of content-carrying words relative to the full sentence was 

associated with relatively high brain predictivity, though all of these conditions led to a significant 

drop in performance relative to the Original condition (0.35 Original vs. 0.28-0.21, ts=9.21-28.58, 

ps<.001; 20-42% drops). Preserving fewer content words—preserving all content words 

(KeepContentW), preserving only the nouns, verbs, and adjectives (KeepNVA), only the nouns and 

verbs (KeepNV), or only the nouns (KeepN)—led to a gradual decrease in predictivity values, even 

though scores for KeepContentW and KeepNVA as well as for KeepNVAdj and KeepNV did not 

differ significantly from each other (see Table SI 3). By contrast, retaining only the function words 

(i.e., removing all content-carrying words) led to a brain predictivity comparable to that of a 

random word list (0.03 RandWordList vs. 0.06 KeepFunctionW, t=-2.57, p>.05; a ~83% drop from 

the Original condition). To ensure that the strong drop in predictivity for the KeepFunctionW 

condition was not merely an artifact of the length of the condition (a relatively low number of 

words in each input string, Table SI 4), we included an additional control condition (RandN, 

Figure SI 7), which was matched for length with the KeepN condition, but in which the nouns 

were randomly sampled from the nouns in the dataset. This RandN control condition was 

associated with predictivity performance no different than the random word list control condition 

(0.03 RandWordList vs. 0.04 RandN, t=-0.96, p>.05), and similar to the KeepFunctionW condition 

(0.04 RandN vs. 0.06 FunctionWords, t=-1.88, p>.05, Table SI 2). These results highlight a large 
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asymmetry in the contribution of content vs. function words to brain predictivity and suggest that 

preserving more of the lexical semantic content leads to higher predictivity. 

 

iii) Semantic-distance manipulations (Figure 2C) 

 

As expected, replacing the original sentence with a random sentence was associated with chance-

level predictivity (0.01, ~98% predictivity drop; one-sample t-test to 0: t=0.78, p>.05), similar to 

that of a random list of words (RandWordList vs. RandSent, t=2.1, p>.05; ruling out the possibility 

that any well-formed and meaningful sentence would yield high brain predictivity). Replacing the 

sentence with a sentence from the same topic was associated with a ~68% drop relative to Original 

(0.11; Original vs RandSentFromTopic, t=28.35, p<.001), much lower than the predictivity 

associated with word order scrambling manipulations (~8-24% predictivity drop range) or 

manipulations that preserve at least some of the content words (e.g., ~42% predictivity drop in the 

KeepN condition). This result demonstrates that a rough topical overlap does not suffice for high 

brain predictivity. However, replacing the original sentence with a sentence from the same passage 

was associated with a drop in predictivity of ~13% (0.31; Original vs. RandSentFromPassage, 

t=6.84, p<.001). (Note that in the RandSentFromPassage and RandSentFromTopic conditions 

where sentences were shuffled within subparts of the hierarchically structured dataset, an 

unavoidable overlap between train and test sentences was introduced for the experimental setup 

using 5 splits. We show that no key pattern of results was affected using a 2-split cross-validation 

split in Figure SI 8 and report the results for the 5-fold experimental paradigm here for consistency 

across manipulation types.) Finally, replacing the original sentence with a paraphrase led to a drop 

of ~11% (0.31; Original vs. Paraphrase, t=10.78, p<.001), which is comparable to the predictivity 
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of the RandSentFromPassage condition, even though the lexical overlap is substantially higher 

between the Original and the Paraphrase conditions compared to the Original vs. the 

RandSentFromPassage condition (Figure SI 9). The result from the Paraphrase condition shows 

that a) even sentences that are highly similar in overall meaning are still associated with a small 

but reliable decrease in predictivity relative to the original sentence, which can be taken to suggest 

that the model-to-brain match is sensitive to subtle differences in wording, which are associated 

with subtle semantic differences; and b) when a certain degree of sentence-level semantic 

similarity with Original is reached (as the case for both Paraphrase and RandSentFromPassage 

conditions; see Figure SI 4), stronger lexical overlap does not have much of an effect on 

predictivity as evidenced from the fact that Paraphrase was not significantly different from 

RandSentFromPassage (Table SI 3). 

3.2. Perturbation manipulations that are associated with larger representational 

distortion in the ANN embedding space and render linguistic stimuli more 

surprising lead to lower brain predictivity 

In this section, we investigate why certain perturbation manipulation conditions yield lower brain 

predictivity than others. We explore two potential factors: a) differences between the original 

sentences and the perturbed versions in the ANN representational embedding space (Results; 

Section 3.2.1), and b) the effect of the perturbation manipulations on the ANN’s task performance 

(i.e., next-word prediction performance; Results; Section 3.2.2). 
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3.2.1 Perturbation manipulations that are associated with larger representational 

distortion in the ANN embedding space lead to lower brain predictivity 

Do changes in the ANN representational space across perturbed sentence sets (relative to the intact 

sentences) explain why certain perturbation conditions yield lower brain predictivity than others? 

To find out, we investigate—for all ANN model layers—what makes some ANN layer 

representations more suitable than others for predicting brain responses. In particular, we 

investigated whether layers for which representations of the perturbed stimuli are more similar to 

the representations of the intact sentences perform better at predicting brain responses. To do so, 

for each of 18 perturbation manipulations (1 original, 7 word-order manipulations, 5 information-

loss manipulations, 4 semantic-distance manipulations, and 1 control (random word list) 

manipulation), we calculated the degree of representational similarity (as quantified by the 

Spearman rank correlation coefficient, ρ) between a layer's representation of the original, intact 

sentence and the corresponding perturbed sentence. We then averaged these correlation 

coefficients across all intact-perturbed pairs, to derive a single value per perturbation manipulation 

per ANN layer. We then correlated these average correlation values with the associated brain 

predictivity scores (i.e., a total of 864 values: 18 average correlation values x 48 layers). 

 

We observed a strong positive correlation (Pearson r=0.72 across all perturbation manipulation 

conditions, p<.001; Figure 3A) between i) the similarity of an ANN layer’s representation of the 

original and perturbed stimuli for a given manipulation and ii) how well that layer could predict 

neural responses for that perturbation manipulation. The positive relationship differed across 

perturbation manipulation conditions, but was statistically significant in each condition (Figure 

3A, panels i-v). This relationship suggests that perturbation manipulation conditions that distort 
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the representation of the original, intact sentences to a larger extent are associated with lower brain 

predictivity scores. On average, later layers (red colors) yielded higher brain predictivity scores; 

For some perturbation manipulation conditions, like the KeepFunctionW condition (pentagon 

symbol), however, all layers (including later ones) exhibited poor brain predictivity performance 

that was also associated with consistently low representational similarity to the intact sentences. 

 

Finally, to understand the trends in Figure 3A at a finer grain, we investigated the degree of 

similarity between the representations of the intact and perturbed stimuli in a selected layer (here: 

GPT2-xl’s last layer) across perturbation manipulation conditions (Figure 3B). As expected, 

relatively subtle manipulations (e.g., 1LocalWordSwap) did not strongly affect the representational 

similarity: the representation of the perturbed sentence versions is very similar to that of the 

original versions (Spearman ρ=0.95). Across the word-order manipulations (Figure 3B; panel ii), 

representational similarity to the intact sentences gradually decreased with the severity of the 

word-order scrambling. Likewise, across the information-loss manipulations (Figure 3B; panel 

iii), representational similarity decreased the more lexical content was removed, with 

representations of only the nouns in the sentence already achieving an average representational 

similarity of 0.66. Across the semantic-distance manipulations (Figure 3B; panel iv), 

representational similarity decreased with increasing semantic distance. The most destructive 

manipulations (e.g., the KeepFunctionW, RandSent, and RandWordList conditions) were the least 

similar in their representations to the original sentences. Note that the random word list control 

condition, although showing lower similarity to the original sentences than all the critical 

perturbation conditions (except the KeepFunctionW condition), still achieved a similarity score of 

0.39. This suggests that GPT2-xl’s representations of length-matched random word lists are not 
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orthogonal to those of intact sentences (i.e., some units in the last layer of GPT2-xl respond 

similarly independent of the specific words). 

 

The overall pattern across perturbation manipulation conditions, shown in Figure 3B, is similar to 

the pattern of brain predictivity scores shown in Figure 2. This similarity mirrors the main finding 

from Figure 3A, which includes information on all perturbations across all ANN layers: 

perturbation manipulations that render the representations more distinct from those for intact 

sentences also result in lower brain predictivity scores. 

 



 
 
 

47 

 

Figure 3. Representational similarity to the original sentences is correlated with brain predictivity. A. Each 

individual data point shows the correlation between brain predictivity (y-axis) and degree of similarity to the intact 

sentence set (x-axis, quantified using the Spearman’s rank correlation coefficient, ρ) for a layer of the GPT2-xl ANN 

model and a certain perturbation manipulation condition. The ANN layer index is denoted by colors. The perturbation 

manipulation condition is denoted by data point marker symbols. B. Similarity of the representations from the last 

layer of GPT2-xl across conditions to its representations of the intact sentences (note though that the brain predictivity 

scores reported in the previous sections are from the best-performing layer, not the last one). 
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3.2.2 Perturbation manipulations that render linguistic stimuli more surprising lead 

to lower brain predictivity 

In this section, we ask whether the performance of the ANN-to-brain mapping model is linked to 

the next-word prediction accuracy of a language ANN model. The most widely used training task 

for large-scale language ANNs is word-in-context prediction, which aims to minimize the surprisal 

of a word in the input string conditioned on its context. For this analysis, we obtained the average 

token surprisal of each input string and averaged these surprisal values across items in each 

linguistic manipulation condition. We then correlated the difference in these average surprisal 

values for each condition, relative to the surprisal of the original string, with the difference in brain 

predictivity for each manipulation condition, relative to brain predictivity for the original 

condition. Sentence surprisal values were always obtained for the last layer of the ANN (given that 

GPT2 models are trained to predict next tokens using the last layer representation of the context, 

and not any other layer representation), whereas brain predictivity scores were derived from the 

best-performing layer, as before. 

 

Across the Original, Word-order, Information-loss, and Control perturbation manipulation 

conditions, we observed a positive correlation between the difference in average string surprisal 

(i.e., surprisal averaged across tokens in a string, and then averaged across items in a condition) 

and the difference in brain predictivity relative to the Original sentence condition (Pearson r=0.58, 

p<.05), indicating that stimuli with high surprisal yield less predictive ANN representations for 

encoding brain responses. This finding suggests that sentence perturbations that affect an ANN 
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language model’s mapping onto brain responses also affect the language model’s performance on 

the next-word prediction task. 

 

 

Figure 4. Correlation between difference in brain predictivity relative to the original brain predictivity score 

and difference in average string surprisal relative to the original sentence condition. Individual data points are 

perturbation manipulation conditions (original, information-loss, word-order, and control) colored according to overall 

perturbation manipulation category. Surprisal values are in nats (logarithm to base e). Note that we excluded the 

semantic-distance manipulation category for this analysis, because 3 out of 4 of these manipulations by design shuffled 

sentences across the entire material set and hence i) each string did not bear relation to the original string, and ii) 

average surprisal values across the materials would be identical to Original. In contrast, the stimuli in the two other 

perturbation categories bear relation to the original string: The information-loss conditions retain words of certain 

parts of speech relative to the intact sentence, word-order manipulations retain all lexical items from the original string, 

and the length-matched control condition RandWordList exchanges every word in the sentence with a different word 

and is thus length-matched.  
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3.3. The pattern of brain predictivity across linguistic perturbation 

manipulations is robust to variation in the computational experimental 

design 

  

Figure 5. Overview of computational experimental design conditions. Overview of the computational 

experimental condition factors investigated. We provide a factorial analysis of the contribution of i) the ANN-to-brain 

mapping model (either forcing the mapping model to generalize to novel perturbation types during test time 

(TrainIntact-TestPerturbed) or allowing the mapping model to exploit perturbation types seen at training time 

(TrainPerturbed-Test-Perturbed), and ii) linguistic contextualization in the computational experimental design (either 

mimicking the human experimental design and providing prior passage context (Contextualized, see Methods; fMRI 

dataset) or no sentence-external context (Decontextualized). We note that the condition presented in Results; Section 

3.1.1 and Figure 2 is the TrainIntact-Test-Perturbed_Contextualized.  

 

In Sections 3.1 and 3.2, we provided a systematic analysis of the aspects of linguistic stimuli that 

contribute to the high performance of ANN-to-brain mapping models, as reported in Schrimpf et 

al. (2021) and investigated why certain perturbation manipulations yield lower brain predictivity 

Contextualized 
(passage)

Decontextualized
(sentence)

Train on intact; 
test on perturbed

TrainIntact-TestPerturbed_ 
Contextualized

TrainIntact-TestPerturbed_ 
Decontextualized

Train on perturbed; 
test on perturbed

TrainPerturbed-TestPerturbed_ 
Contextualized

TrainPerturbed-TestPerturbed_ 
Decontextualized

Linguistic contextualization

AN
N

-t
o-

br
ai

n 
m

ap
pi

ng
 m

od
el



 
 
 

51 

than others. In this section, we investigate the robustness of these findings to changes in the 

computational experimental design. 

 

In particular, we focus on two factors of the experimental design: training the mapping model on 

intact vs. perturbed stimuli and contextualization of sentence representations with respect to the 

preceding passage context, crossed in 2x2 factorial design (as summarized in Figure 5). Figure 6 

(panels A-E) shows each of these four factor combinations as individual, colored lines across our 

perturbation manipulations. The experimental design condition investigated in Results; Section 

3.1 (and 3.2) is the TrainIntact-TestPerturbed_Contextualized condition (dark purple lines). 

 

Figure 6. Brain predictivity patterns are largely robust to variations in the computational experimental design. 

A-E. Comparison of brain predictivity across experimental design conditions (as summarized in Figure 5). Each 

TrainIntact-TestPerturbed_Contextualized

Experimental design conditions
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experimental design condition is shown as an individual line across our perturbational manipulation conditions 

(individual panels). For each condition, we plot the raw brain predictivity (Pearson r) of the best-performing layer, 

i.e., the fraction of variance explained that the model can predict relative to the ceiling of the fMRI dataset. We note 

that the condition presented in Results; Section 3.1 and Figure 2 is the TrainIntact-TestPerturbed_Contextualized 

condition (dark purple line). F-I. Barplots for each experimental design condition. Each panel (with a series of 

barplots) corresponds to a single line in panels A-E with box color matching the line color. Manipulation condition 

scores that were significantly different from the Original and RandWordList control benchmarks (dark and light gray 

dashed lines, respectively) are marked with asterisks (p<.05: *; p<.01: **; p<.001: ***). Significance was established 

via dependent two-sided t-tests, with p-values corrected for multiple comparisons (within each perturbation 

manipulation condition) using the Bonferroni procedure. Error bars show median absolute deviation within 

participants.  

 

The four computational experimental design conditions yielded highly similar brain predictivity 

patterns across the 18 perturbation manipulation conditions, as was evidenced by an average 

pairwise Pearson correlation of r=.84 (p<.001). The lowest pairwise correlation across perturbation 

manipulations (Pearson r=.63) was obtained by comparing TrainPerturbed-

TestPerturbed_Contextualized vs. TrainIntact-TestPerturbed_Decontextualized while the highest 

correlation was obtained for TrainPerturbed-TestPerturbed_Decontextualized vs. TrainIntact-

TestPerturbed_Decontextualized (Pearson r=.96). 

 

We note that even though all computational experimental conditions were highly correlated, there 

was a substantial difference in the magnitude of brain predictivity scores associated with each 

profile. For example, brain predictivity for the intact (Original) condition ranged between 0.26 

and 0.35, (Figure 6A, Original). Across perturbation manipulation conditions, we observed a 

boost in brain predictivity performance when including previous in-passage sentences as context 
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(purple lines vs. orange lines): on average brain predictivity improved by .06 for TrainIntact-

TestPerturbed designs and .14 for TrainPerturbed-TestPerturbed designs (cf. Discussion; Section 

4.3) (see Table SI 5 for all pairwise comparison statistics between computational experimental 

design profiles within a manipulation condition). 

 

For all experimental design conditions, we observed a substantial drop in ANN-to-brain mapping 

performance for the random word list control condition relative to Original (Figure 6E, Control) 

(Original vs. RandWordList: p<.05 across all four factor combinations). Nevertheless, when the 

mapping model was trained and tested on contextualized representations of random word lists, the 

performance of the mapping model was unexpectedly high (TrainPerturbed-

TestPerturbed_Contextualized, light purple line). For the same computational experimental 

design, we also observed surprisingly high ANN-to-brain mapping model performance for the 

random sentences semantic-distance manipulation (RandSent). These results suggest that this 

mapping model was still able to extract a substantial amount of useful information for predicting 

responses to held-out sentences, even for stimuli that we would not expect to carry a lot of useful 

information for match-to-brain (indicating an undesired interaction between the contextualization 

and cross-validation schemes, see Discussion). However, not just any input sentence elicited a high 

brain predictivity score in this design. Replacing all words in the sentence with one and the same 

word (Figure SI 6B, condition LengthControl), led to a near chance-level performance (see also 

Figure SI 4). This result shows that, when allowed to exploit meaningful, lexical semantic content 

from the context, a mapping model can use ANN representations derived from random word lists 

and random sentences to obtain relatively high predictivity; even though low-level features of the 

stimulus, such as its length, are not sufficient to obtain high predictivity (Figure SI 6B).  
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In sum, our findings suggest that the conclusions from Results: Section 3.1 regarding the 

contributions of features of the linguistic input are mostly robust against variation in the 

computational experimental design. In the Supporting Information, we report results indicating 

that the conclusions of Section 3.2 are similarly robust: across computational experimental design 

conditions, we observed that greater linguistic perturbations lead to a) more divergent 

representations in the ANN’s embedding space (relative to the representations of intact sentences; 

Figure SI 10) and b) a decrease in the ANN’s next-word prediction task performance, i.e., its 

ability to predict upcoming tokens in those stimuli (Figure SI 11). 
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4. Discussion 

A number of independent studies have recently shown that representations from state-of-the-art 

ANN models—especially unidirectional Transformer models—align well with brain responses of 

humans processing linguistic input (e.g., Jain & Huth, 2018; Pereira et al., 2018; Toneva & Wehbe, 

2019; Gauthier & Levy, 2019; Schrimpf et al., 2021; Caucheteux & King, 2022; Goldstein et al., 

2022; Kumar et al., 2022; Merlin & Toneva, 2022; Millet et al., 2022; Oota et al., 2022; Pasquiou 

et al., 2022). However, what makes ANN representations align with human neural responses to 

language has been little explored (cf. Gauthier & Levy, 2019; Merlin & Toneva, 2022; Oota et al., 

2022). Focusing on the top-performing unidirectional-attention GPT model family (Schrimpf et 

al., 2021), we systematically investigated the effect of diverse linguistic perturbation 

manipulations, including manipulations that strongly affect sentence meaning (carried largely by 

content words) and those that primarily affect syntactic structure (carried by word order and 

function words) on the ability of an ANN-to-brain model to predict brain responses. 

 

The contributions of our work are three-fold: First, we found that lexical semantic content is a 

stronger contributor to the similarity between ANN language models and brain data than syntactic 

structure (conveyed by word order or function words), although above a certain level of sentence-

level semantic similarity, lexical overlap no longer contributes much. Second, we found that 

linguistic perturbations that decrease brain predictivity have interpretable causes: they lead to more 

divergent representations in the ANN’s embedding space (relative to the representations of intact 

sentences) and decrease the ANN’s next-word prediction task performance, i.e., its ability to 

predict upcoming tokens in those stimuli. Finally, we found that the effects of these linguistic 
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manipulations are largely robust to variations in the ‘computational experimental design’, 

including whether the mapping model is trained on intact vs. perturbed stimuli and whether the 

model is fed contextualized representations that mimic the experimental set-up in human 

experiments. We elaborate on our findings and discuss their implications below. 

4.1 Lexical semantic content, not syntactic structure, is the primary driver 

of the ANN-to-brain similarity 

We showed that ANN language models exploit the lexical semantic content of the sentence, rather 

than the sentence’s syntactic form (conveyed via word order or function words) when predicting 

brain data. Similarly, sentences elicit higher brain predictivity the more topically related they are 

to the stimulus for which brain representations were obtained. We demonstrated that this pattern 

is robust across variations in the computational experimental design, indicating that the ANN-to-

brain mapping model pays only limited attention to the part of the ANN representation of the 

stimulus that is sensitive to syntactic information, but rather relies on the representations of the 

content words’ meanings. These findings align with two growing bodies of evidence: i) one from 

(computational) neuroscience that points to the relatively greater importance of meaning for both 

the magnitude and distributed patterns of activation in the brain’s language system as 

measured/measurable by fMRI (e.g., Fedorenko et al., 2016; Huth et al., 2016; Pereira et al., 2018; 

Gauthier & Levy, 2019; Mollica, Siegelman et al., 2020), and ii) another from NLP that shows 

that ANNs do not necessarily need to use word-order information to solve many current natural 

language processing benchmark tasks (e.g., Pham et al., 2021; Sinha et al., 2021; O’Connor & 

Andreas, 2021; cf. Abdou et al., 2022; Lasri et al., 2022). 
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In our study, we aimed to integrate neuroscientific and NLP perspectives on the role of lexical 

semantic content vs. syntactic information in the building of linguistic representations, and our 

perturbation conditions took inspiration from both of these fields. Specifically, the word order 

manipulations investigated here were inspired by an fMRI study that found the human language 

network responds as robustly to strings with scrambled word order as to naturalistic input as long 

as the scrambled order still allows for local composition of words into chunks and phrases 

(Mollica, Siegelman et al., 2020). Similar to these findings, we found that word-order perturbations 

that preserve local pointwise mutual information lead to only a small decrease in a model’s ability 

to predict brain responses; but unlike the results reported for human participants in (Mollica, 

Siegelman et al., 2020), we found that even extreme word-order perturbations, which disrupt local 

semantic and syntactic dependencies, lead to a similarly small decrease in ANN-to-brain mapping 

performance. Further, we found that the omission of function words does little to decrease brain 

predictivity. 

 

We hypothesize that these results are due to the fact that mapping models do not strongly rely on 

syntactic information (as argued above). However, an alternative explanation is that—at least in 

the word-order scrambling manipulations—ANN language models might implicitly (albeit 

perhaps noisily) reconstruct the original sentence (Malkin et al., 2021; Sinha et al., 2021), plausibly 

enabled by their extensive memory capacity. In particular, ANNs have access to the exact words 

in the sentence context (up to a maximal token length, which is not exceeded in our sentence 

material), whereas memory limitations in humans lead them to discard the exact word sequences 

after extracting the relevant meaning from them (e.g., Potter et al., 1998; Potter, 2012a; 

Christiansen & Chater, 2016; Hahn et al., 2022). 
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Of course, the inability of ANN-to-brain mapping models to detect the fine-grained structure of 

the original sentence could also be due to other reasons, such as the low temporal resolution of 

fMRI data, which might impose limitations on the detection of structure effects. Given that the 

language system is strongly sensitive to syntactic processing difficulty (e.g., Blank et al., 2016; 

Shain, Blank et al., 2020; Shain et al., 2022), it is plausible that modeling linguistic representation 

construction word-by-word (cf. for the whole sentence at once as we did here), along with perhaps 

using more temporally-resolved data (e.g., from intracranial human recordings), would reveal 

stronger effects of syntactic structure than the ones found here. Nevertheless, our results show that 

syntactic structure is not critical in matching ANN representations with fMRI BOLD responses, at 

least for the summary representations of sentences. 

 

It is also worth noting that stronger effects of structure might be detected in sentence materials 

where structure is critical to interpretation, as in cases where word order is the only cue to the 

propositional meaning, in the absence of animacy/plausibility cues (e.g., The boy introduced the 

teacher to the girl) or in cases where the identity/location of a particular function word is critical, 

again in the absence of plausibility biases (e.g., He went out of the building vs. He went into the 

building; or The book is on the table vs. The book is under the table). 

 

4.2 Perturbations that decrease brain predictivity have interpretable causes 

Given that different perturbation conditions affected brain predictivity to quite different extents, 

we investigated potential reasons for these differences and identified two interpretable correlates, 
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one related to the ANN representational space and the other related to ANN task performance. 

Perturbation manipulations that led to lower brain scores also (i) led to more divergent 

representations in the ANN’s embedding space (relative to the representations of intact sentences), 

and (ii) decreased the ANN’s next-word prediction task performance, i.e., its ability to predict 

upcoming tokens in those stimuli. 

 

Related to the ANN representational space, there has been interest in understanding how the units 

that make up the representations of current large ANN language models change across stimuli and 

model layers (Ethayarajh, 2019; Biś et al., 2021). In Results; Section 3.2.1 we quantified the 

changes in the representational space across our perturbation conditions relative to the intact 

stimuli and found that perturbations that changed the ANN representation to a greater extent 

(relative to the representation of the original, intact sentence) also led to larger decreases in brain 

predictivity scores. Interestingly, even for the most extreme perturbations (e.g., replacing a 

sentence with a random word list or a random sentence) led to representations that were still 

moderately correlated with the representations of the intact stimuli (even if these altered 

representations could not capture human neural responses under most computational experimental 

design settings). This pattern suggests that in our mapping models, only a subset of the full ANN 

representational space is being used to represent the stimuli investigated here (naturalistic 

sentences of length 5-20 words and their perturbed versions). More diverse linguistic materials 

(e.g., sentences of different length, style, content or context length) may engage a larger subset of 

the ANN representational space in mapping models. 
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Related to the ANN task performance, there has been interest in understanding how the next-word 

prediction performance of ANN language models is related to ANN-to-brain correspondence (e.g., 

Schrimpf et al., 2021; Antonello & Huth, 2022; Caucheteux & King, 2022; Goldstein et al., 2022; 

Hosseini et al., 2022; Merlin & Toneva, 2022), motivated by substantial evidence for predictive 

processing in human language comprehension (e.g., Rayner et al., 2006; Demberg & Keller, 2008; 

Bicknell et al., 2010; Smith & Levy, 2013; Henderson et al., 2016; Willems et al., 2016; Lopopolo 

et al., 2017; Heilbron et al., 2019; Brothers & Kuperberg, 2021; Heilbron et al., 2022; Shain, Blank 

et al., 2022). Here, we presented evidence that among our perturbations, those that rendered stimuli 

less predictable, on average, led to larger decreases in brain predictivity performance (see Merlin 

& Toneva, 2022 for a similar claim for a naturalistic narratives fMRI dataset). This pattern suggests 

that less predictable strings may yield representations that have features that are less suitable for 

predicting fMRI brain data. 

 

4.3 How close are we to quantitatively accurate and generalizable models 

of the human language network? 

We identified features of linguistic stimuli (namely, lexical semantic content) that ANN-to-brain 

mapping models exploit when learning a successful mapping to brain responses. These features 

are exploited by the mapping model independently of whether the mapping model is trained on 

intact or perturbed stimuli, and of whether the ANN representations of the target sentences are 

contextualized with respect to the preceding sentences in a passage. At the same time, we 

demonstrated that these design choices substantially affect the magnitude of the brain scores which 

may lead to different conclusions about the similarity of current ANN language model 
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representations to the ones in the human brain (Figure 6; Original). Furthermore, we showed that 

certain computational experimental designs lead to high brain scores for perturbations that we 

would not expect to not carry a lot of informative structure such as a random word list 

(TrainPerturbed-TestPerturbed, RandWordList; see Figures 2, 6). 

 

The findings from the computational experimental design manipulations yield three important 

insights. First, until the effort of relating ANN model representations to neural representations 

reaches maturity—and the field (hopefully) agrees on a unified framework for performing model-

to-brain comparisons—any findings about the similarity between ANN and human representations 

should be evaluated for robustness to the details of how the comparisons are performed. 

Contextualization of stimuli with respect to the preceding linguistic context may be especially 

important as it may introduce non-independence issues under certain cross-validation set-ups, as 

elaborated in the third point below. 

 

Second, these findings highlight the general importance of using careful stimulus-based controls 

(e.g., replacing the stimuli with random sentences or lists of words) when evaluating ANN-to-

brain mappings, in addition to using control (e.g., untrained) models. Only examining ANN-to-

brain mapping performance for the original stimuli (those presented to human participants) may 

lead to flawed inferences about the nature of the similarity. For example, if the ANN representation 

of a list of random words leads to a similar level of mapping performance with a neural response 

to some sentence as the representation of that sentence, then we cannot infer that the ANN model 

is representing the sentence in a similar way to humans. 
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And third, combining the two previous points, the fact that certain computational experimental 

designs achieve high predictivity performance on stimuli that are not well-matched with the input 

to humans showcases an important point that has not received sufficient attention in the recent 

ANN-to-brain literature: contextualizing sentences by including the preceding sentences in the 

story/passage, to match how the stimuli were presented to humans can lead to inflated brain 

predictivity performance under certain cross-validation set-ups. In particular, current language 

models have the ability to keep track of extended contexts, and if contextualization is not properly 

controlled for, shared context windows for sentences that go into the train set vs. the test set can 

lead to ‘leakage’ of statistical regularities in these contextualized ANN representations, leaving 

the two sets not truly independent. Furthermore, on the brain side, neural responses to coherent 

texts can be correlated across time for (at least) two reasons: a) the participant is still thinking 

about the content of the previous context when processing the current word/sentence, and/or b) 

neural measurements tend to be more similar when they are temporally close (the property known 

as autocorrelation, which is especially prevalent in methods like fMRI that rely on slow 

physiological changes; e.g., Bullmore et al., 1996). The two sources of statistical leakage (one in 

the contextualized sentence representations, one in the neural signal) can be potentially exploited 

by the ANN-to-brain mapping model. 

 

The passage structure of the benchmark we used in the current study (Pereira et al., 2018) allowed 

us to perform an exploratory analysis of this issue. Given that contextualization affects sentences 

and the fMRI BOLD signal within passages, but not across them, we split the stimuli into train 

and test sets in two ways: by sentence vs. by passage. By-sentence splitting is the approach that 

was adopted in Schrimpf et al. (2021) and that we followed here; this approach disregards the 
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passage structure and is therefore subject to the ANN contextualization leakage problem just 

described. In contrast, by-passage splitting, whereby all the sentences from the same passage end 

up in the same set (train or test) rather than being split across those sets, should solve the leakage 

problem (although note that this splitting approach additionally requires generalization to new 

semantic domains: e.g., predicting neural responses to sentences about beekeeping when the 

mapping model has never seen any sentences related to beekeeping). 

 

We found that splitting the train and test sets by passage yielded much lower brain predictivity 

scores than splitting the dataset by sentences: ~0.10 brain predictivity (Figure SI 12), in 

comparison with ~0.35 brain predictivity for by-sentence splitting when preceding within-passage 

sentences are included as context, and ~0.26 for by-sentence splitting when preceding sentences 

are not included as context. In addition, representations of random sentences and random lists of 

words are no longer predictive of human neural responses under this splitting approach in the 

TrainPerturbed-TestPerturbed_Contextualized experimental design (in contrast to the same 

design, i.e., the light purple datapoints in Figure 6a). As laid out above, this drop in predictivity 

could be due to the following non-mutually exclusive factors: ANN contextualization leakage, 

fMRI autocorrelation, and/or the greater difficulty of generalizing to novel semantic domains. 

Given that non-contextualized sentence representations achieve predictivity of ~0.26 (substantially 

higher than ~0.10) (Figure 6; Figure SI 12), we can tentatively rule out the contextual leakage in 

ANN representations as the main contributor. Understanding the contributions to higher 

predictivity in the by-sentence cross-validation approach of a) temporal autocorrelation in the 

fMRI signal vs. b) the relative difficulty of generalizing to new semantic domains may require 

additional data collection (e.g., neural responses to semantically diverse sentences, similar to 
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Pereira et al. (2018), but presented in a random order instead of in passage structure; removing the 

autocorrelation between semantically related sentences in this new benchmark would enable a 

direct comparison of generalization of the mapping model to sentences from the same/similar 

semantic domains vs. to sentences from new semantic domains, and comparing the results with 

those from the current benchmark would allow quantifying the contribution of autocorrelation to 

neural predictivity). Regardless of what these future investigations reveal, however, it seems clear 

that current ANN language models still have much room for improvement before they can serve 

as accurate and generalizable models of the fMRI BOLD responses in the human language 

network. 

5. Conclusion 

In this work, we asked why representations from state-of-the-art ANN language models align with 

human brain responses (as measured with fMRI) during language processing. To do so, we 

performed a systematic, large-scale investigation of which linguistic features (across three 

manipulation categories and four computational experimental designs) reliably contribute to ANN-

to-brain mapping performance. We found that the ANN-to-brain mapping model mainly attends 

to the lexical semantic content—the key contributor to the sentence’s meaning—rather than to 

word order or function words, which jointly create the sentence’s syntactic frame. Changes in 

lexical semantic content, compared to word order or function words, lead to more divergent 

representations in the ANN’s embedding space and also decrease the ANN’s ability to predict 

upcoming tokens in those stimuli. This pattern of results is robust to variations in the computational 

experimental design, suggesting that the lexical semantic content of a sentence is reliably encoded 

in fMRI responses to language. However, our exploratory investigation of different cross-
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validation settings has also revealed that although current ANN-to-brain mapping models capture 

a non-trivial amount of variance in human neural data, they do not easily generalize to new 

semantic contexts, which leaves room for future work to make language models more human-like. 

 

Data and Code Availability 

All code and data are available at https://github.com/carina-kauf/perturbed-neural-nlp. Previously 

published data were used for this work (Pereira et al., 2018). 
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Supplementary Information (SI) 

Supplementary Figures 

 

Figure SI 1. Robustness of brain predictivity scores across ANN model sizes and sentence representations.  

Across the three model instantiations and the two sequence summary versions, we observe a robust result pattern, with 

consistent numerical differences between models across conditions. 
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A. Predictivity performance of ANN-to-brain models trained on ANN representations of intact sentences and tested 

on ANN representations of perturbed sentences for three GPT-2 model instantiations (TrainIntact-

TestPerturbed_Contextualized): Distil-GPT2, GPT2, and GPT2-xl. B. Predictivity performance using two different 

approaches for representing the sentence for Distil-GPT2 (analyses performed using Distil-GPT2 due to computational 

cost and robust patterns across ANN model sizes, see panel A). The primary approach was the last token representation 

where the sequence representation is obtained at the last sentence token (see Methods; Retrieving ANN model 

representations). We investigated an alternative approach, the average token representation, where we computed the 

arithmetic mean of all the token representations in the sentence, excluding the token representations of the preceding 

sentences (if any): in particular, if a sentence was the second sentence within a passage, we did not take into account 

the token representations from the first sentence in that passage, only the tokens that comprise the current sentence.  
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Figure SI 2. Brain predictivity scores across GPT2-xl layers for each perturbation manipulation condition.  

Each panel (A-C) shows the scores across layers for all perturbation manipulation conditions within each category. 

The mapping model was trained on ANN representations of intact sentences and evaluated on ANN representations 

of perturbed sentences (TrainIntact-TestPerturbed_Contextualized). The shaded regions illustrate the median absolute 

deviation (m.a.d.) error within participants. 
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Figure SI 3. PMI verification of word-order manipulation conditions.  

A. Average positive pointwise mutual information (PMI) for each word-order manipulation condition. Each data point 

represents a sentence, and the error bars show the standard deviation from the mean. The {1,3,5,7}LocalWordSwaps 

and ReverseOrder conditions were designed to preserve local dependency structure (see Methods; Perturbation 

manipulation conditions; Word-order manipulations). As expected, the Original, {1,3,5,7}LocalWordSwaps and 

ReverseOrder conditions were not significantly different from each other  (panel B).  

The two low-PMI conditions (LowPMI and LowPMIRandom) were designed to destroy local dependency structure. 

As expected, the deterministically created low-PMI condition (LowPMI), the nondeterministically-created low-PMI 

condition (LowPMIRandom) and the random wordlist condition (RandWordList) were each significantly different 

from all other conditions. 

B. Significance was established via independent two-sided t-tests, with p-values corrected for multiple comparisons 

(within each perturbation manipulation condition) using the Bonferroni procedure, here shown as a grid of pairwise 

p-values for all comparisons.  
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Figure SI 4. Validation of gradual semantic distance to Original within the semantic-distance perturbation 

conditions (quantified using contextualized embeddings from GPT2-xl).  

A. We quantified the pairwise Cosine similarity of all 627 GPT2-xl sentence representation vectors for the semantic-

distance manipulation datasets (conditions: Paraphrase, RandSentFromPassage, RandSentFromTopic, RandSent) 

with the representation of the intact version of the sentence (condition: Original). As expected, semantic similarity 

with the original sentence gradually decreased across conditions. B. The semantic-distance manipulations were 

significantly different from each other (independent two-sided t-tests with Bonferroni correction, ps<.001).  
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Figure SI 5. Brain predictivity performance of ANN-to-brain mapping models on held-out sentences using a 

fixed layer across all perturbation manipulation conditions (as opposed to the best-performing layer for each 

condition as shown in Figure 2 in the main text). 

As in Figure 2, the mapping model was trained on ANN representations of intact sentences and evaluated on ANN 

representations of perturbed sentences (TrainIntact-TestPerturbed_Contextualized). Different from Figure 2, for this 

analysis, we selected the layer that performed best on the Original benchmark (encoder layer 44) instead of selecting 

the best-performing layer per condition. Bars show the brain predictivity using this fixed layer across the three 

perturbation manipulation conditions. Note that the RandWordList control condition reaches chance-level 

performance (zero). 
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Figure SI 6. A length-controlled benchmark (LengthControl) performs on par with random word lists 

(RandWordList), and performs significantly better than chance. 

 A. Performance of the ANN-to-brain mapping model on held-out sentences, trained on ANN representations of intact 

sentences and evaluated on ANN representations of perturbed sentences (TrainIntact-TestPerturbed_Contextualized) 

on an additional control condition LengthControl (each word in the original sentence replaced by the word “the”, 

allowing to test for effects due to the number of words in the sentence), relative to Original and RandWordList. A 

one-sample t-test shows that the LengthControl condition leads to non-zero predictivity performance (t=3.34, p<.01). 

B. Performance of ANN-to-brain mapping model on held-out sentences, trained on ANN representations of perturbed 

sentences and evaluated on ANN representations of perturbed sentences (TrainPerturbed-

TestPerturbed_Contextualized), including the control condition LengthControl. A one-sample t-test shows that the 

LengthControl condition leads to non-zero predictivity performance (t=6.84, p<.001). 
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Figure SI 7. A benchmark with random nouns (RandN) performs on par with random word lists 

(RandWordList).  

The additional control benchmark, RandN, contained exclusively nouns (randomly sampled from the nouns in the 

dataset) and was matched for length with the KeepN condition. Brain predictivity performance of ANN-to-brain 

mapping model on held-out sentences (TrainPerturbed-TestPerturbed_Contextualized) of the RandN benchmark 

along with the remaining information-loss manipulations. The RandN benchmark performed on par with the random 

word list benchmark, RandWordList.  
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Figure SI 8. Key patterns of results are not affected by choice of number of splits in cross-validation procedure. 

Brain predictivity performance of ANN-to-brain mapping model on held-out sentences (TrainIntact-

TestPerturbed_Contextualized) of the semantic-distance perturbation manipulation category benchmarks which were 

designed to shuffle sentences within the dataset (see Methods; Perturbation manipulation conditions; Semantic-

distance manipulations). Due to the infeasibility of assigning sentences to 5 cross-validation folds and shuffling 

sentences according to the hierarchical structure of the Pereira et al. (2018) dataset, we additionally ran the RandSent, 

RandSentFromPassage and RandSentFromTopic TrainIntact-TestPerturbed benchmark versions (along with the 

Original and RandWordList benchmarks for comparison) using only 2 cross-validation splits instead of the default 

number of 5-folds. Using this procedure, all but 17.17% of sentence representations could be shuffled relative to its 

associated fMRI data for RandSentFromPassage and all sentences could be successfully shuffled with the associated 

fMRI data for RandSentFromTopic, leading to a less biased benchmark compared to the default 5-fold cross-validation 

scheme. The key patterns of results were not affected. For consistency with the remaining results, the 5-fold cross-

validation results are reported in the main text. 
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Figure SI 9. Quantification of word overlap ratio with Original across semantic-distance manipulations.  

For each of the semantic-distance manipulations, we quantified the ratio of word overlap for each sentence with the 

corresponding sentence from the Original condition and averaged the overlap ratios to obtain a summary statistic. 

Word overlap was quantified as (unique number of overlapping words) / (unique number of words in ({semantic-

distance manipulation} + Original)). Error bars show the standard deviation from the mean. 

 

 

  

Word overlap ratio with Original (semantic-distance manipulations)

Paraphrase RandSent
FromPassage

RandSent
FromTopic

RandSent
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
g.

 ra
tio

 o
f s

ha
re

d 
w

or
ds

 w
ith

 O
rig

in
al



 
 
 

92 

 

Figure SI 10. Representational similarity to the original sentences is correlated with brain predictivity (across 

all computational experimental designs).  

Each individual data point shows the correlation between brain predictivity (y-axis) and degree of similarity to the 

intact sentence set (x-axis, quantified using the Spearman’s rank correlation coefficient, ρ) for a layer of the GPT2-xl 

ANN model and a certain perturbation manipulation condition for all computational experimental designs (panels A-

D). The ANN layer index is denoted by colors. The perturbation manipulation condition is denoted by data point 

marker symbols. 
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Figure SI 11. Perturbation manipulations that render sentences on average more surprising lead to lower brain 

predictivity (across all computational experimental designs).  

The plots show the correlation between i) the difference in average sentence token surprisal between each perturbed 

sentence set and the original sentence set and ii) the difference in brain predictivity scores between each perturbed 

benchmark and the Original benchmark across all computational experimental designs (panels A-D). 
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Figure SI 12. Brain predictivity performance of ANN-to-brain mapping using two different cross-validation 

schemes.  

Stimuli were separated into train and test sets in two ways: i) by sentence, disregarding the passage structure in the 

Pereira et al. 2018 dataset (light gray bars) vs. ii) by passage, such that all the sentences from the same passage end 

up in the same set (train or test) rather than being split across those sets (dark gray bar). For comparison to Results; 

Section 3.3, we show the contextualized and decontextualized ANN representation in the by-sentence split scheme as 

investigated throughout the manuscript. The ANN-to-brain mapping model was canonically trained (i.e., trained on 

the Original, intact sentences and tested on intact sentences (TrainPerturbed-TestPerturbed_Contextualized), 

consistent with prior work). Error bars show median absolute deviation (m.a.d.) error within participants. 
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Supplementary Tables 

 

 

 

Table SI 1. Examples of passages from Experiment 2 and Experiment 3 from Pereira et al. (2018), respectively. 

 

 

  

Example of passage from Experiment 2 (384 sentences, 96 passages). Topic: Musical Instrument. 

1 An accordion is a portable musical instrument with two keyboards.

2 One keyboard is used for individual notes, the other for chords.

3 Accordions produce sound with bellows that blow air through reeds.

4 An accordionist plays both keyboards while opening and closing the bellows.

Example of passage from Experiment 3 (243 sentences, 72 passages). Topic: Beekeeping.

1 Beekeeping encourages the conservation of local habitats.

2 It is in every beekeeper's interest to conserve local plants that produce pollen.

3 As a passive form of agriculture, it does not require that native vegetation be cleared to make way for crops.

4 Beekeepers also discourage the use of pesticides on crops, because they could kill the honeybees.
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Table SI 2. Statistics for Figure 2 in the main text (Results; Section 3.1). Pairwise, two-sided, dependent t-tests 

for all comparisons performed between the condition Original and all conditions of interest, as well as between 

condition RandWordList and all conditions of interest across perturbation manipulation classes. P-values were 

corrected for multiple comparisons (within each perturbation manipulation condition) using the Bonferroni procedure. 

Effect sizes, as quantified by Cohen’s d are reported. 

 

 

  

Comparison with Original Comparison with RandWordList

T-test statistic Adjusted p-value Cohen’s d T-test statistic Adjusted p-value Cohen’s d

1LocalWordSwap 5.517 0.0026 0.572 -18.327 0.0000 -8.288

3LocalWordSwaps 5.814 0.0018 1.527 -17.437 0.0000 -9.487

5LocalWordSwaps 6.507 0.0008 1.630 -17.104 0.0000 -9.322

7LocalWordSwaps 6.781 0.0006 1.641 -16.790 0.0000 -9.230

ReverseOrder 9.285 0.0000 2.383 -15.265 0.0000 -8.060

LowPMI 6.354 0.0009 1.560 -20.505 0.0000 -9.994

LowPMIRand 8.467 0.0001 2.043 -17.035 0.0000 -8.542

KeepContentW 9.209 0.0000 1.855 -19.649 0.0000 -7.141

KeepNVAdj 12.825 0.0000 1.977 -16.826 0.0000 -6.617

KeepNV 17.944 0.0000 2.697 -16.811 0.0000 -6.942

KeepN 28.583 0.0000 4.842 -13.441 0.0000 -5.743

KeepFunctionW 17.400 0.0000 9.866 -2.571 0.1506 -1.122

Paraphrase 10.782 0.0000 1.238 -17.966 0.0000 -8.251

RandSentFromPassage 6.843 0.0003 0.975 -17.600 0.0000 -8.621

RandSentFromTopic 28.347 0.0000 7.502 -6.438 0.0005 -2.654

RandSent 24.262 0.0000 11.849 2.088 0.2657 1.002
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Condition 1 Condition 2 T-test statistic Adjusted p-value Significance Cohen's d Manipulation

1LocalWordSwap 3LocalWordSwaps 2.9 0.369 n.s. 0.77 word-order

1LocalWordSwap 5LocalWordSwaps 3.469 0.148 n.s. 0.867 word-order

1LocalWordSwap 7LocalWordSwaps 3.437 0.156 n.s. 0.882 word-order

1LocalWordSwap ReverseOrder 6.886 0.002 ** 1.588 word-order

1LocalWordSwap LowPMI 3.568 0.127 n.s. 0.771 word-order

1LocalWordSwap LowPMIRand 5.775 0.006 ** 1.267 word-order

3LocalWordSwaps 5LocalWordSwaps 3.3 0.194 n.s. 0.127 word-order

3LocalWordSwaps 7LocalWordSwaps 3.076 0.278 n.s. 0.15 word-order

3LocalWordSwaps ReverseOrder 6.27 0.003 ** 1.055 word-order

3LocalWordSwaps LowPMI -0.161 1.0 n.s. -0.032 word-order

3LocalWordSwaps LowPMIRand 3.849 0.082 n.s. 0.648 word-order

5LocalWordSwaps 7LocalWordSwaps 0.403 1.0 n.s. 0.024 word-order

5LocalWordSwaps ReverseOrder 6.046 0.004 ** 0.929 word-order

5LocalWordSwaps LowPMI -0.898 1.0 n.s. -0.165 word-order

5LocalWordSwaps LowPMIRand 3.185 0.233 n.s. 0.523 word-order

7LocalWordSwaps ReverseOrder 5.07 0.014 * 0.9 word-order

7LocalWordSwaps LowPMI -0.927 1.0 n.s. -0.189 word-order

7LocalWordSwaps LowPMIRand 2.599 0.604 n.s. 0.496 word-order

ReverseOrder LowPMI -7.609 0.001 ** -1.137 word-order

ReverseOrder LowPMIRand -2.491 0.721 n.s. -0.4 word-order

LowPMI LowPMIRand 3.82 0.086 n.s. 0.711 word-order

Condition 1 Condition 2 T-test statistic Adjusted p-value Significance Cohen's d Manipulation

KeepContentW KeepNVAdj 1.224 1.0 n.s. 0.185 information-loss

KeepContentW KeepNV 5.581 0.003 ** 0.684 information-loss

KeepContentW KeepN 9.939 0.0 *** 2.516 information-loss

KeepContentW KeepFunctionW 13.773 0.0 *** 7.019 information-loss

KeepNVAdj KeepNV 3.167 0.114 n.s. 0.461 information-loss

KeepNVAdj KeepN 10.063 0.0 *** 2.186 information-loss

KeepNVAdj KeepFunctionW 11.576 0.0 *** 6.413 information-loss

KeepNV KeepN 9.472 0.0 *** 1.923 information-loss

KeepNV KeepFunctionW 12.889 0.0 *** 6.861 information-loss

KeepN KeepFunctionW 9.804 0.0 *** 5.597 information-loss

Condition 1 Condition 2 T-test statistic Adjusted p-value Significance Cohen's d Manipulation

Paraphrase RandSentFromPass
age

-1.476 1.0 n.s. -0.271 semantic-distance

Paraphrase RandSentFromTopi
c

22.931 0.0 *** 6.089 semantic-distance

Paraphrase RandSent 20.345 0.0 *** 10.255 semantic-distance

RandSentFromPassage RandSentFromTopi
c

20.488 0.0 *** 6.45 semantic-distance

RandSentFromPassage RandSent 24.504 0.0 *** 10.713 semantic-distance

RandSentFromTopic RandSent 8.25 0.0 *** 4.231 semantic-distance
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Table SI 3. Additional Statistics for Figure 2 in the main text (Results; Section 3.1). Pairwise, two-sided, 

dependent t-tests for all comparisons performed between the conditions within the same perturbation manipulation 

classes. P-values were corrected for multiple comparisons (within each perturbation manipulation condition) using 

the Bonferroni procedure. Effect sizes, as quantified by Cohen’s d, are reported. 
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Table SI 4. Overview of average sentence length across information-loss manipulation conditions (Original 

condition included for reference). Note that the conditions in all other perturbation manipulation classes have the same 

number of words as the Original condition. 

 

  

Manipulation type Condition Average length 
(in words)

Original Original 12.33

Information-loss KeepContentW 8.20

KeepNVAdj 7.79

KeepNV 6.70

KeepN 4.35

RandN 4.35

KeepFunctionW 4.13
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Experimental Design 1 Experimental Design 2 T-test 
statistic

Adjusted 
p-value

Significance Cohen's d Manipulation

TrainIntact-
TestPerturbed_Contextualized

TrainIntact-
TestPerturbed_Decontextualized

12.761 0.0 *** 2.724 original

TrainIntact-
TestPerturbed_Contextualized

TrainPerturbed-
TestPerturbed_Contextualized

NaN NaN n.s. 0.0 original

TrainIntact-
TestPerturbed_Contextualized

TrainPerturbed-
TestPerturbed_Decontextualized

12.779 0.0 *** 2.725 original

TrainIntact-
TestPerturbed_Decontextualized

TrainPerturbed-
TestPerturbed_Contextualized

-12.761 0.0 *** -2.724 original

TrainIntact-
TestPerturbed_Decontextualized

TrainPerturbed-
TestPerturbed_Decontextualized

1.71 0.728 n.s. 0.001 original

TrainPerturbed-
TestPerturbed_Contextualized

TrainPerturbed-
TestPerturbed_Decontextualized

12.779 0.0 *** 2.725 original

TrainIntact-
TestPerturbed_Contextualized

TrainIntact-
TestPerturbed_Decontextualized

24.965 0.0 *** 2.6 word-order

TrainIntact-
TestPerturbed_Contextualized

TrainPerturbed-
TestPerturbed_Contextualized

-11.522 0.0 *** -1.203 word-order

TrainIntact-
TestPerturbed_Contextualized

TrainPerturbed-
TestPerturbed_Decontextualized

21.512 0.0 *** 2.441 word-order

TrainIntact-
TestPerturbed_Decontextualized

TrainPerturbed-
TestPerturbed_Contextualized

-26.873 0.0 *** -3.547 word-order

TrainIntact-
TestPerturbed_Decontextualized

TrainPerturbed-
TestPerturbed_Decontextualized

-3.217 0.012 * -0.239 word-order

TrainPerturbed-
TestPerturbed_Contextualized

TrainPerturbed-
TestPerturbed_Decontextualized

25.058 0.0 *** 3.428 word-order

TrainIntact-
TestPerturbed_Contextualized

TrainIntact-
TestPerturbed_Decontextualized

12.249 0.0 *** 0.643 information-loss

TrainIntact-
TestPerturbed_Contextualized

TrainPerturbed-
TestPerturbed_Contextualized

-13.436 0.0 *** -1.025 information-loss

TrainIntact-
TestPerturbed_Contextualized

TrainPerturbed-
TestPerturbed_Decontextualized

8.364 0.0 *** 0.565 information-loss

TrainIntact-
TestPerturbed_Decontextualized

TrainPerturbed-
TestPerturbed_Contextualized

-24.0 0.0 *** -1.76 information-loss

TrainIntact-
TestPerturbed_Decontextualized

TrainPerturbed-
TestPerturbed_Decontextualized

-1.298 1.0 n.s. -0.074 information-loss

TrainPerturbed-
TestPerturbed_Contextualized

TrainPerturbed-
TestPerturbed_Decontextualized

24.699 0.0 *** 1.662 information-loss

TrainIntact-
TestPerturbed_Contextualized

TrainIntact-
TestPerturbed_Decontextualized

5.916 0.0 *** 0.358 semantic-distance

TrainIntact-
TestPerturbed_Contextualized

TrainPerturbed-
TestPerturbed_Contextualized

-7.058 0.0 *** -1.109 semantic-distance

TrainIntact-
TestPerturbed_Contextualized

TrainPerturbed-
TestPerturbed_Decontextualized

5.972 0.0 *** 0.422 semantic-distance

TrainIntact-
TestPerturbed_Decontextualized

TrainPerturbed-
TestPerturbed_Contextualized

-13.32 0.0 *** -1.942 semantic-distance

TrainIntact-
TestPerturbed_Decontextualized

TrainPerturbed-
TestPerturbed_Decontextualized

1.632 0.664 n.s. 0.073 semantic-distance

TrainPerturbed-
TestPerturbed_Contextualized

TrainPerturbed-
TestPerturbed_Decontextualized

15.065 0.0 *** 2.059 semantic-distance

TrainIntact-
TestPerturbed_Contextualized

TrainIntact-
TestPerturbed_Decontextualized

0.468 1.0 n.s. 0.135 control

TrainIntact-
TestPerturbed_Contextualized

TrainPerturbed-
TestPerturbed_Contextualized

-12.789 0.0 *** -6.414 control

1
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Table SI 5. Statistics for Figure 4 in the main text (Results; Section 3.3). Pairwise, two-sided, dependent t-tests 

for all comparisons performed between the computational experimental design conditions across perturbation 

manipulation classes. P-values were corrected for multiple comparisons (within each perturbation manipulation 

condition) using the Bonferroni procedure. 

 

  

TrainIntact-
TestPerturbed_Contextualized

TrainPerturbed-
TestPerturbed_Decontextualized

-0.05 1.0 n.s. -0.014 control

TrainIntact-
TestPerturbed_Decontextualized

TrainPerturbed-
TestPerturbed_Contextualized

-12.437 0.0 *** -6.767 control

TrainIntact-
TestPerturbed_Decontextualized

TrainPerturbed-
TestPerturbed_Decontextualized

-0.519 1.0 n.s. -0.151 control

TrainPerturbed-
TestPerturbed_Contextualized

TrainPerturbed-
TestPerturbed_Decontextualized

13.808 0.0 *** 6.421 control

2
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Supplementary Methods 

Estimation of ceiling. Due to intrinsic noise in biological measurements, we estimated a ceiling 

value (i.e., a normalizing constant for the correlation between actual and ANN-predicted brain 

responses) which quantifies how well the best possible “average human” model could perform on 

predicting brain responses in single voxels for held-out “target” participants. In our ceiling 

estimation, we included the n=5 participants that completed both experiments in the Pereira et al. 

(2018) dataset to obtain full overlap in the materials across participants. Following Schrimpf et al. 

(2021), the ceiling value was estimated using a three-step procedure: 

 

Step 1: Collect data for extrapolation 

We first subsampled the data with n=5 recorded participants into all possible combinations of p 

participants for all p∈[2,n=5]. For example, for p=2 there are 5P2=20 possible subsample 

combinations from the participant pool. To keep computational cost manageable, for each 

subsample size p, we used only 10 of these random subsample combinations to calculate 

correlation scores (that will be used in the extrapolation in Step 2). For example, for p=2, we 

randomly picked 10 subsamples from the 10 possible participant subsamples of size 2 from the 5 

participants in the participant pool. For each of these subsamples for a given p, we then designated 

one participant as the target (such that each participant is chosen as the target once) whose brain 

responses we attempt to predict from the remaining p-1 participants (e.g., predict 1 participant 

from 1 (other) participant (p=2), 1 from 2 participants (p=3), …, 1 from n-1 participants (p=n)) to 

obtain a correlation score between the predicted and the actual activation of the voxel for each 

voxel in the “target” participant for the given subsample. Hence, instead of predicting a “target” 

participant’s voxels using an ANN embedding (as done in the main analysis), we used voxels from 
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the “predictor” participants as an embedding (if only one participant was used as the “predictor” 

participant, we used that participant’s voxels; if two or more participants were used as “predictor” 

participants, their voxels were concatenated).  

 

Step 2: Get ceiling value per voxel by extrapolating prediction accuracy to infinitely many 

participants 

We computed a ceiling value for each voxel individually using an extrapolation approach. To 

extrapolate the approach described in Step 1 beyond the number of participants in the participant 

pool (n=5), we fitted the equation for each voxel where p is each subsample’s number of 

participants (i.e., 2, …, 5), v is each subsample’s correlation score and are the fitted parameters for 

asymptote and slope respectively. For each voxel, we used 100 bootstraps to fit the ceiling to 

different subsets of predicted values across subsamples and used the median of the asymptote 

values from the 100 bootstraps as that voxel’s ceiling value. Specifically, for each of the 100 

bootstraps, we resample the correlation values (with replacement) for each p and fit the equation 

above. 

 

Step 3: Aggregate the ceiling values across voxels to obtain the ceiling value 

After estimating a ceiling value for all voxels in all of the 5 participants as described in Steps 1 

and 2, we used these scores to compute the dataset’s final ceiling value that was used as a 

normalizing constant for the brain predictivity scores (correlation between actual and ANN-

predicted brain responses). To do so, we computed the median of the per-voxel ceilings across all 

voxels and all participants. Via this procedure, we obtained a final ceiling value  of 0.32 for the 

Pereira et al. (2018) dataset. The model scores we report are the model’s overall raw correlation 
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scores (aggregated as described in Methods; Comparison of ANN model representations to brain 

measurements) divided by this ceiling value.  

 


